Pattern recognition frequency-based feature selection with multi-objective discrete evolution strategy for high-dimensional medical datasets

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorNematzadeh, Hossein
dc.contributor.authorGarcía-Nieto, José Manuel
dc.contributor.authorAldana-Montes, José Francisco
dc.contributor.authorNavas-Delgado, Ismael
dc.date.accessioned2024-03-13T13:45:31Z
dc.date.available2024-03-13T13:45:31Z
dc.date.issued2024-02-17
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractFeature selection has a prominent role in high-dimensional datasets to increase classification accuracy, decrease the learning algorithm computational time, and present the most informative features to decision-makers. This paper proposes a two-stage hybrid feature selection for high-dimensional medical datasets: Maximum Pattern Recognition - Multi-objective Discrete Evolution Strategy (MPR-MDES). MPR is a rapid filter ranker that significantly outperforms existing frequency-based rankers in recognizing non-linear patterns, effectively eliminating a majority of non-informative features. Then, the wrapper Multi-objective Discrete Evolution Strategy (MDES) uses the remaining features and obtains sets of solutions which are automatically presented to decision-makers. The experiments conducted on large medical datasets demonstrate that MPR-MDES achieves considerable improvements compared to state-of-the-art methods, in terms of both classification accuracy and dimensionality reduction. In this sense, the proposal successfully performs when presenting informative feature sets to decision-makers. The implementation is available on https://github.com/KhaosResearch/MPR-MDES.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga/CBUA . This work has been partially funded by grants (funded by MCIN/AEI/10.13039/501100011033/) PID2020-112540RB-C41, AETHER-UMA (A smart data holistic approach for context-aware data analytics: semantics and context exploitation), and QUAL21 010UMA (Junta de Andalucía).es_ES
dc.identifier.citationHossein Nematzadeh, José García-Nieto, José F. Aldana-Montes, Ismael Navas-Delgado, Pattern recognition frequency-based feature selection with multi-objective discrete evolution strategy for high-dimensional medical datasets, Expert Systems with Applications, Volume 249, Part A, 2024, 123521, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2024.123521es_ES
dc.identifier.doi10.1016/j.eswa.2024.123521
dc.identifier.urihttps://hdl.handle.net/10630/30824
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectReconocimiento de formas (Informática)es_ES
dc.subjectSistemas informáticoses_ES
dc.subject.otherFeature selectiones_ES
dc.subject.otherHigh-dimensional datasetses_ES
dc.subject.otherFilteres_ES
dc.subject.otherWrapperes_ES
dc.subject.otherMulti-objective optimizationes_ES
dc.titlePattern recognition frequency-based feature selection with multi-objective discrete evolution strategy for high-dimensional medical datasetses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublication7eac9d6a-0152-4268-8207-ea058c82e531
relation.isAuthorOfPublication4e298ef9-8825-4aa8-be87-ac0f8adbf1b7
relation.isAuthorOfPublication.latestForDiscovery04a9ec70-bfda-4089-b4d7-c24dd0870d17

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0957417424003865-main.pdf
Size:
2.4 MB
Format:
Adobe Portable Document Format
Description:

Collections