Pattern recognition frequency-based feature selection with multi-objective discrete evolution strategy for high-dimensional medical datasets
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Nematzadeh, Hossein | |
| dc.contributor.author | García-Nieto, José Manuel | |
| dc.contributor.author | Aldana-Montes, José Francisco | |
| dc.contributor.author | Navas-Delgado, Ismael | |
| dc.date.accessioned | 2024-03-13T13:45:31Z | |
| dc.date.available | 2024-03-13T13:45:31Z | |
| dc.date.issued | 2024-02-17 | |
| dc.departamento | Instituto de Tecnología e Ingeniería del Software de la Universidad de Málaga | |
| dc.description.abstract | Feature selection has a prominent role in high-dimensional datasets to increase classification accuracy, decrease the learning algorithm computational time, and present the most informative features to decision-makers. This paper proposes a two-stage hybrid feature selection for high-dimensional medical datasets: Maximum Pattern Recognition - Multi-objective Discrete Evolution Strategy (MPR-MDES). MPR is a rapid filter ranker that significantly outperforms existing frequency-based rankers in recognizing non-linear patterns, effectively eliminating a majority of non-informative features. Then, the wrapper Multi-objective Discrete Evolution Strategy (MDES) uses the remaining features and obtains sets of solutions which are automatically presented to decision-makers. The experiments conducted on large medical datasets demonstrate that MPR-MDES achieves considerable improvements compared to state-of-the-art methods, in terms of both classification accuracy and dimensionality reduction. In this sense, the proposal successfully performs when presenting informative feature sets to decision-makers. The implementation is available on https://github.com/KhaosResearch/MPR-MDES. | es_ES |
| dc.description.sponsorship | Funding for open access charge: Universidad de Málaga/CBUA . This work has been partially funded by grants (funded by MCIN/AEI/10.13039/501100011033/) PID2020-112540RB-C41, AETHER-UMA (A smart data holistic approach for context-aware data analytics: semantics and context exploitation), and QUAL21 010UMA (Junta de Andalucía). | es_ES |
| dc.identifier.citation | Hossein Nematzadeh, José García-Nieto, José F. Aldana-Montes, Ismael Navas-Delgado, Pattern recognition frequency-based feature selection with multi-objective discrete evolution strategy for high-dimensional medical datasets, Expert Systems with Applications, Volume 249, Part A, 2024, 123521, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2024.123521 | es_ES |
| dc.identifier.doi | 10.1016/j.eswa.2024.123521 | |
| dc.identifier.uri | https://hdl.handle.net/10630/30824 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Reconocimiento de formas (Informática) | es_ES |
| dc.subject | Sistemas informáticos | es_ES |
| dc.subject.other | Feature selection | es_ES |
| dc.subject.other | High-dimensional datasets | es_ES |
| dc.subject.other | Filter | es_ES |
| dc.subject.other | Wrapper | es_ES |
| dc.subject.other | Multi-objective optimization | es_ES |
| dc.title | Pattern recognition frequency-based feature selection with multi-objective discrete evolution strategy for high-dimensional medical datasets | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 04a9ec70-bfda-4089-b4d7-c24dd0870d17 | |
| relation.isAuthorOfPublication | 7eac9d6a-0152-4268-8207-ea058c82e531 | |
| relation.isAuthorOfPublication | 4e298ef9-8825-4aa8-be87-ac0f8adbf1b7 | |
| relation.isAuthorOfPublication.latestForDiscovery | 04a9ec70-bfda-4089-b4d7-c24dd0870d17 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0957417424003865-main.pdf
- Size:
- 2.4 MB
- Format:
- Adobe Portable Document Format
- Description:

