Metabolite-Driven Modulation of Biofilm Formation in Shewanella: Insights from Shewanella sp. Pdp11 Extracellular Products
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
Share
Center
Department/Institute
Keywords
Abstract
Biofilm formation is a survival strategy for bacteria, contributing to their persistence in natural and industrial environments. In this study, we investigated the ability of extracellular products (ECPs) produced by the probiotic strain Shewanella sp. Pdp11 under different culture conditions to inhibit biofilm formation in pathogenic and environmental Shewanella strains. ECPs from specific culture conditions altered biofilm formation in several Shewanella strains, with Shewanella hafniensis P14 displaying the highest sensitivity. Metabolomic analysis of the ECPs identified glycogen as a key metabolite associated with biofilm inhibition. Further genomic analysis of S. hafniensis P14 revealed an interruption in its glycogen synthesis pathway, suggesting a dependency on external glycogen-related metabolites for biofilm development. These findings demonstrate that Shewanella sp. Pdp11 ECPs can modify biofilm formation across multiple Shewanella strains, particularly in S. hafniensis P14 through glycogen-associated mechanisms.
Description
Bibliographic citation
Pérez-Gómez, O., Domínguez-Maqueda, M., García-Márquez, J. et al. Metabolite-Driven Modulation of Biofilm Formation in Shewanella: Insights from Shewanella sp. Pdp11 Extracellular Products. Microb Ecol 88, 55 (2025). https://doi.org/10.1007/s00248-025-02552-x
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Atribución-NoComercial 4.0 Internacional










