Supervised learning of natural-terrain traversability with synthetic 3D laser scans
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Share
Department/Institute
Keywords
Abstract
Autonomous navigation of ground vehicles on natural environments requires looking for traversable terrain continuously. This paper develops traversability classifiers for the three-dimensional (3D) point clouds acquired by the mobile robot Andabata on non-slippery solid ground. To this end, different supervised learning techniques from the Python library Scikit-learn are employed. Training and validation are performed with synthetic 3D laser scans that were labelled point by point automatically with the robotic simulator Gazebo. Good prediction results are obtained for most of the developed classifiers, which have also been tested successfully on real 3D laser scans acquired by Andabata in motion.
Description
Bibliographic citation
Martínez JL, Morán M, Morales J, Robles A, Sánchez M. Supervised Learning of Natural-Terrain Traversability with Synthetic 3D Laser Scans. Applied Sciences. 2020; 10(3):1140. https://doi.org/10.3390/app10031140
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional










