Supervised learning of natural-terrain traversability with synthetic 3D laser scans

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorMartínez-Rodríguez, Jorge Luis
dc.contributor.authorMorán, Mariano
dc.contributor.authorMorales-Rodríguez, Jesús
dc.contributor.authorRobles, Alfredo
dc.contributor.authorSánchez, Manuel
dc.date.accessioned2024-01-31T09:23:18Z
dc.date.available2024-01-31T09:23:18Z
dc.date.created2024
dc.date.issued2020
dc.departamentoIngeniería de Sistemas y Automática
dc.description.abstractAutonomous navigation of ground vehicles on natural environments requires looking for traversable terrain continuously. This paper develops traversability classifiers for the three-dimensional (3D) point clouds acquired by the mobile robot Andabata on non-slippery solid ground. To this end, different supervised learning techniques from the Python library Scikit-learn are employed. Training and validation are performed with synthetic 3D laser scans that were labelled point by point automatically with the robotic simulator Gazebo. Good prediction results are obtained for most of the developed classifiers, which have also been tested successfully on real 3D laser scans acquired by Andabata in motion.es_ES
dc.description.sponsorshipAndalusian project UMA18-FEDERJA-090 and Spanish project RTI2018-093421-B-I00es_ES
dc.identifier.citationMartínez JL, Morán M, Morales J, Robles A, Sánchez M. Supervised Learning of Natural-Terrain Traversability with Synthetic 3D Laser Scans. Applied Sciences. 2020; 10(3):1140. https://doi.org/10.3390/app10031140es_ES
dc.identifier.doi10.3390/app10031140
dc.identifier.urihttps://hdl.handle.net/10630/29459
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectVehículos autodirigidoses_ES
dc.subject.other3D laser scanneres_ES
dc.subject.otherTraversabilityes_ES
dc.subject.otherSupervised machine learninges_ES
dc.subject.otherField roboticses_ES
dc.subject.otherSensor simulationes_ES
dc.titleSupervised learning of natural-terrain traversability with synthetic 3D laser scanses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationf7f187bf-2543-410f-8e9e-d920911a5fd1
relation.isAuthorOfPublication14fa0e60-c422-48ee-8093-600fb95e788c
relation.isAuthorOfPublication.latestForDiscoveryf7f187bf-2543-410f-8e9e-d920911a5fd1

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-10-01140-v3.pdf
Size:
13.29 MB
Format:
Adobe Portable Document Format
Description:

Collections