Diagnosis automática con 5G para entornos de emergencia

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorTrujillo, José Antonio
dc.contributor.authorDe la Bandera Cascales, Isabel
dc.contributor.authorBarco-Moreno, Raquel
dc.date.accessioned2023-09-22T08:35:43Z
dc.date.available2023-09-22T08:35:43Z
dc.date.created2023-09
dc.date.issued2023
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractEmergency communications are a fundamental aspect for any community, becoming more necessary year after year. This fact, together with the continuous advance of mobile network technologies, enables increasingly more reliable and faster communications in critical situations. The aim of this work is to provide a diagnostic system to detect the specific failures that occur in a mobile network in an emergency situation. In the same way, the proposed methodology is also capable of providing the most suitable solution to mitigate the effects that the disaster or emergency has caused in the network.es_ES
dc.description.sponsorshipEste trabajo ha sido financiado parcialmente por la Unión Europea en el marco del proyecto ’Massive AI for the Open Radio beyond 5G/6G (MAORI)’ de la Next Generation EU, .También parcialmente financiado a través del II Plan Propio de Investigación y Transferencia de la Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/27640
dc.language.isoenges_ES
dc.relation.eventdate13/09/2023es_ES
dc.relation.eventplaceCácereses_ES
dc.relation.eventtitleXXXVIII Simposio Nacional de la Unión Científica Internacional de Radio (URSI 2023)es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectTelecomunicacioneses_ES
dc.subjectSistemas de comunicaciones móvileses_ES
dc.subject.otherSelf-Organizing Networkses_ES
dc.subject.otherMobile Communicationses_ES
dc.subject.otherEmergency situationses_ES
dc.subject.otherMachine learninges_ES
dc.titleDiagnosis automática con 5G para entornos de emergenciaes_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc933e578-ad80-410f-88c2-f0dbdaa6cf72
relation.isAuthorOfPublication.latestForDiscoveryc933e578-ad80-410f-88c2-f0dbdaa6cf72

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Resumen_RIUMA.pdf
Size:
87.91 KB
Format:
Adobe Portable Document Format
Description: