Hilbert-Type Operators Acting on Bergman Spaces.
| dc.contributor.author | Aguilar-Hernández, Tanausú | |
| dc.contributor.author | Galanopoulos, Petros | |
| dc.contributor.author | Girela-Álvarez, Daniel | |
| dc.date.accessioned | 2025-10-09T11:29:24Z | |
| dc.date.available | 2025-10-09T11:29:24Z | |
| dc.date.issued | 2024-09-02 | |
| dc.departamento | Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada | es_ES |
| dc.departamento | Matemática Aplicada | es_ES |
| dc.description | This version of the article has been accepted for publication, after peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at https://doi.org/10.1007/s40315-024-00560-5 | es_ES |
| dc.description | The following information regarding funding is not present in either the postprint or published version of the article: "The first author was supported in part by Ministerio de Universidades: "Margarita Salas", grant (Funded by the Spanish Recovery, Transformation and Resilience Plan, and European Union - NextGenerationEU), and by a grant from Ministerio de Ciencia e Innovación, Spain (PID2022-136320NB-I00). The third author was supported in part by a grant from Ministerio de Ciencia e Innovación, Spain (PID2022-136619NB-I00) and by a grant from La Junta de Andalucía, Spain (FQM-210)." | es_ES |
| dc.description.abstract | If µ is a positive Borel measure on the interval [0, 1) we let H_{µ} be the Hankel matrix H_{µ} = (µ_{n,k} )_{n,k≥0} with entries µ_{n,k} = µ_{n+k}, where, for n = 0, 1, 2, . . . , µ_{n} denotes the moment of order n of µ. This matrix formally induces an operator, called also H_{µ}, on the space of all analytic functions in the unit disc D as follows: If f is an analytic function in D, f (z) = \sum_{k=0}^{∞} a_{k} z^{k} , z ∈ D, H_{µ}(f) is formally defined by H_{µ}(f)(z)=\sum_{n=0}^{∞} ( \sum_{k=0}^{∞} µ_{n+k} a_{k} ) z^{n}, z ∈ D. This is a natural generalization of the classical Hilbert operator. This paper is devoted to studying the operators H_{µ} acting on the Bergman spaces A^p , 1 ≤ p < ∞. Among other results, we give a complete characterization of those µ for which H_{µ} is bounded or compact on the space A^p when p is either 1 or greater than 2. We also give a number of results concerning the boundedness and compactness of H_{µ} on A^p for the other values of p, as well as on its membership in the Schatten classes S_{p}(A^2 ). | es_ES |
| dc.identifier.citation | Aguilar-Hernández, T., Galanopoulos, P. & Girela, D. Hilbert-Type Operators Acting on Bergman Spaces. Comput. Methods Funct. Theory (2024). https://doi.org/10.1007/s40315-024-00560-5 | es_ES |
| dc.identifier.doi | 10.1007/s40315-024-00560-5 | |
| dc.identifier.uri | https://hdl.handle.net/10630/40152 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer Nature | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Hilbert, Operadores en espacio de | es_ES |
| dc.subject | Funciones de variable compleja | es_ES |
| dc.subject | Operadores, Teoría de | es_ES |
| dc.subject.other | Generalized Hilbert operator | es_ES |
| dc.subject.other | Bergman spaces | es_ES |
| dc.subject.other | Duality | es_ES |
| dc.subject.other | Carleson measures | es_ES |
| dc.subject.other | Bounded operator | es_ES |
| dc.subject.other | Compact operator | es_ES |
| dc.subject.other | Schatten classes | es_ES |
| dc.subject.other | The Hilbert matrix | es_ES |
| dc.title | Hilbert-Type Operators Acting on Bergman Spaces. | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | AM | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 20358c49-a3a2-47fd-892b-c73fdbc2870d | |
| relation.isAuthorOfPublication.latestForDiscovery | 20358c49-a3a2-47fd-892b-c73fdbc2870d |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- cmft24011.pdf
- Size:
- 447.36 KB
- Format:
- Adobe Portable Document Format
- Description:

