Random sets on manifolds under an infinite–dimensional Log–Gaussian Cox process approach.
| dc.contributor.author | Frías, María P. | |
| dc.contributor.author | Torres-Signes, Antoni | |
| dc.contributor.author | Ruiz-Medina, María D. | |
| dc.date.accessioned | 2024-08-02T09:29:06Z | |
| dc.date.available | 2024-08-02T09:29:06Z | |
| dc.date.issued | 2022 | |
| dc.departamento | Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada | |
| dc.description | "Unless stated otherwise, the contents of this website are subject to the Creative Commons License BY-NC" http://www.metma-x.udl.cat/home | |
| dc.description.abstract | A new framework is introduced in this paper for modeling and statistical analysis of point sets in a manifold, that randomly arise through time. Specifically, in the characterization of these sets, the random counting measure is assumed to belong to the family of Cox processes driven by a L2(M)–valued Log–Gaussian intensity, where M denotes here a compact two–point homogeneous space. The associated family of temporal covariance operators on L2(M) characterizes the n–order product density under stationarity in time. In particular, the pair correlation functional, the reduced second order moment measure or K function can also be constructed from this covariance operator family. Some functional summary statistics of interest are introduced, analyzing their asymptotic properties in the simulation study undertaken. | es_ES |
| dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
| dc.identifier.citation | Frías, M.P.,Torres-Signes, A.,Ruiz-Medina, M.D. Random sets on manifolds under an infinite–dimensional Log–Gaussian Cox process approach. METMA X Proceedings of the 10th International Workshop on Spatio-Temporal Modelling. 109 - 113 (2022) | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10630/32405 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Edicions i Publicacions de la Universitat de Lleida | es_ES |
| dc.relation.eventdate | 1-3 June 2022 | es_ES |
| dc.relation.eventplace | Lleida (Spain) | es_ES |
| dc.relation.eventtitle | 10th International Workshop on Spatio-Temporal Modelling (METMA X, 2022) | es_ES |
| dc.rights | Attribution-NonCommercial 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
| dc.subject | Modelos matemáticos | es_ES |
| dc.subject.other | Compact two–point homogeneous space | es_ES |
| dc.subject.other | Log–Gaussian Cox processes | es_ES |
| dc.subject.other | M–valued Gaussian random fields | es_ES |
| dc.subject.other | Functional summary statistics | es_ES |
| dc.title | Random sets on manifolds under an infinite–dimensional Log–Gaussian Cox process approach. | es_ES |
| dc.type | conference output | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | f2b1c7fa-cd93-4365-9281-7667eb068407 | |
| relation.isAuthorOfPublication.latestForDiscovery | f2b1c7fa-cd93-4365-9281-7667eb068407 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- METMA_a.torres.pdf
- Size:
- 1.34 MB
- Format:
- Adobe Portable Document Format
- Description:

