A comparative study of image processing thresholding algorithms on residual oxide scale detection in stainless steel production lines
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Share
Department/Institute
Keywords
Abstract
The present work is intended for residual oxide scale detection and classification through the application of image processing
techniques. This is a defect that can remain in the surface of stainless steel coils after an incomplete pickling process in a
production line. From a previous detailed study over reflectance of residual oxide defect, we present a comparative study of
algorithms for image segmentation based on thresholding methods. In particular, two computational models based on multi-linear
regression and neural networks will be proposed. A system based on conventional area camera with a special lighting was
installed and fully integrated in an annealing and pickling line for model testing purposes. Finally, model approaches will be
compared and evaluated their performance..
Description
Bibliographic citation
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional














