A comparative study of image processing thresholding algorithms on residual oxide scale detection in stainless steel production lines

dc.centroEscuela de Ingenierías Industrialesen_US
dc.contributor.authorCañero-Nieto, Juan Miguel
dc.contributor.authorSolano-Martos, José Francisco
dc.contributor.authorMartín-Fernández, Francisco de Sales
dc.date.accessioned2019-07-15T07:12:33Z
dc.date.available2019-07-15T07:12:33Z
dc.date.created2019
dc.date.issued2019-07-15
dc.departamentoIngeniería Civil, de Materiales y Fabricación
dc.description.abstractThe present work is intended for residual oxide scale detection and classification through the application of image processing techniques. This is a defect that can remain in the surface of stainless steel coils after an incomplete pickling process in a production line. From a previous detailed study over reflectance of residual oxide defect, we present a comparative study of algorithms for image segmentation based on thresholding methods. In particular, two computational models based on multi-linear regression and neural networks will be proposed. A system based on conventional area camera with a special lighting was installed and fully integrated in an annealing and pickling line for model testing purposes. Finally, model approaches will be compared and evaluated their performance..en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.en_US
dc.identifier.urihttps://hdl.handle.net/10630/18045
dc.language.isoengen_US
dc.relation.eventdate19/06/2019en_US
dc.relation.eventplaceMadrid, Españaen_US
dc.relation.eventtitle8th Manufacturing Engineering Society International Conferenceen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA comparative study of image processing thresholding algorithms on residual oxide scale detection in stainless steel production linesen_US
dc.typeconference outputen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationc7b91abf-4c03-4607-b052-72d48be3f7f9
relation.isAuthorOfPublication7ecea308-c23a-48a2-beeb-ce3fcebfdd1d
relation.isAuthorOfPublication32c3bcbf-d371-4d70-b7dc-e57af0e31dbd
relation.isAuthorOfPublication.latestForDiscoveryc7b91abf-4c03-4607-b052-72d48be3f7f9

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Procedia_manufacturing_Mesic19_CaneroNieto - UMA.pdf
Size:
695.55 KB
Format:
Adobe Portable Document Format
Description: