Identification of new proteins related with cisplatin resistance in Saccharomyces cerevisiae
Loading...
Files
Description: Versión final aceptada
Description: Supplementary material
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Share
Center
Department/Institute
Keywords
Abstract
The aim of this study is to select a cisplatin-resistant Saccharomyces cerevisiae strain to look for new molecular markers of resistance and the identification of mechanisms/interactions involved. A resistant strain was obtained after 80 days of cisplatin exposure. Then, total protein extraction, purification, and identification were carried out, in wild-type (wt) and resistant strains, by tandem mass spectrometry using a “nano HPLC-ESI-MS/MS” ion trap system. The increase in the exponentially modified protein abundance index (emPAI) (resistant vs wt strains) was calculated to study the increase in protein expression. “Genemania” software (http://www.Genemania.org/) was used to compare the effects, functions, and protein interactions. KEGG tool was used for metabolic pathway analysis. Data are available via ProteomeXchange with identifier PXD020665. The cisplatin-resistant strain showed 2.5 times more resistance than the wt strain for the inhibitory dose 50% (ID50) value (224 μg/ml vs 89.68 μg/ml) and 2.78 times more resistant for the inhibitory dose 90% (ID90) value (735.2 μg/ml vs 264.04 μg/ml). Multiple deregulated proteins were found in the glutathione and carbon metabolism, oxidative phosphorylation, proteasome, glycolysis and gluconeogenesis, glyoxylate metabolism, fatty acid degradation pathway, citric acid cycle, and ribosome. The most overexpressed proteins in the cisplatin-resistant strain were related to growth and metabolism (QCR2, QCR1, ALDH4, ATPB, ATPA, ATPG, and PCKA), cell structure (SCW10), and thermal shock (HSP26). The results suggest that these proteins could be involved in cisplatin resistance. The resistance acquisition process is complex and involves the activation of multiple mechanisms that interact together.
Description
Bibliographic citation
Burgos-Molina AM, Mercado-Sáenz S, Cárdenas C, López-Díaz B, Sendra-Portero F, Ruiz-Gómez MJ. Identification of new proteins related with cisplatin resistance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2021;105(5):1965-1977. doi:10.1007/s00253-021-11137-w
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional














