Weak and Strong Type Estimates for the Multilinear Littlewood–Paley Operators.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Authors

Cao, Mingming
Hormozi, Mahdi
Ibañez-Firnkorn, Gonzalo
Rivera Ríos, Israel P.
Si, Zengyan
Yabuta, Kôzô

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Center

Abstract

Let be the multilinear square function defined on the cone with aperture . In this paper, we investigate several kinds of weighted norm inequalities for . We first obtain a sharp weighted estimate in terms of aperture and . By means of some pointwise estimates, we also establish two-weight inequalities including bump and entropy bump estimates, and Fefferman–Stein inequalities with arbitrary weights. Beyond that, we consider the mixed weak type estimates corresponding Sawyer’s conjecture, for which a Coifman–Fefferman inequality with the precise norm is proved. Finally, we present the local decay estimates using the extrapolation techniques and dyadic analysis respectively. All the conclusions aforementioned hold for the Littlewood–Paley function. Some results are new even in the linear case.

Description

Política de acceso abierto tomada de: https://openpolicyfinder.jisc.ac.uk/id/publication/15634

Bibliographic citation

Cao, M., Hormozi, M., Ibañez-Firnkorn, G. et al. Weak and Strong Type Estimates for the Multilinear Littlewood–Paley Operators. J Fourier Anal Appl 27, 62 (2021). https://doi.org/10.1007/s00041-021-09870-x

Collections

Endorsement

Review

Supplemented By

Referenced by