On how to improve tracklet-based gait recognition systems
Loading...
Files
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Share
Center
Department/Institute
Abstract
Abstract Recently, short-term dense trajectories features (DTF) have shown state-of-the-art results in video recognition and retrieval. However, their use has not been extensively studied on the problem of gait recognition. Therefore, the goal of this work is to propose and evaluate diverse strategies to improve recognition performance in the task of gait recognition based on DTF. In particular, this paper will show that (i) the proposed RootDCS descriptor improves on DCS in most tested cases; (ii) selecting relevant trajectories in an automatic way improves the recognition performance in several situations; (iii) applying a metric learning technique to reduce dimensionality of feature vectors improves on standard PCA; and, (iv) binarization of low-dimensionality feature vectors not only reduces storage needs but also improves recognition performance in many cases. The experiments are carried out on the popular datasets CASIA, parts B and C, and TUM-GAID showing improvement on state-of-the-art results for most scenarios.
Description
Bibliographic citation
Manuel J. Marín-Jiménez, Francisco M. Castro, Ángel Carmona-Poyato, Nicolás Guil, On how to improve tracklet-based gait recognition systems, Pattern Recognition Letters, Volume 68, Part 1, 2015, Pages 103-110, ISSN 0167-8655, https://doi.org/10.1016/j.patrec.2015.08.025.
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional










