On how to improve tracklet-based gait recognition systems

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorMarín-Jiménez, Manuel J.
dc.contributor.authorCastro Payán, Francisco Manuel
dc.contributor.authorCarmona-Poyato, Ángel
dc.contributor.authorGuil-Mata, Nicolás
dc.date.accessioned2024-09-20T10:44:00Z
dc.date.available2024-09-20T10:44:00Z
dc.date.issued2015-12-15
dc.departamentoArquitectura de Computadores
dc.description.abstractAbstract Recently, short-term dense trajectories features (DTF) have shown state-of-the-art results in video recognition and retrieval. However, their use has not been extensively studied on the problem of gait recognition. Therefore, the goal of this work is to propose and evaluate diverse strategies to improve recognition performance in the task of gait recognition based on DTF. In particular, this paper will show that (i) the proposed RootDCS descriptor improves on DCS in most tested cases; (ii) selecting relevant trajectories in an automatic way improves the recognition performance in several situations; (iii) applying a metric learning technique to reduce dimensionality of feature vectors improves on standard PCA; and, (iv) binarization of low-dimensionality feature vectors not only reduces storage needs but also improves recognition performance in many cases. The experiments are carried out on the popular datasets CASIA, parts B and C, and TUM-GAID showing improvement on state-of-the-art results for most scenarios.es_ES
dc.identifier.citationManuel J. Marín-Jiménez, Francisco M. Castro, Ángel Carmona-Poyato, Nicolás Guil, On how to improve tracklet-based gait recognition systems, Pattern Recognition Letters, Volume 68, Part 1, 2015, Pages 103-110, ISSN 0167-8655, https://doi.org/10.1016/j.patrec.2015.08.025.es_ES
dc.identifier.doihttps://doi.org/10.1016/j.patrec.2015.08.025
dc.identifier.urihttps://hdl.handle.net/10630/32738
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectReconocimiento de formas (Informática)es_ES
dc.subjectHombre - Identificaciónes_ES
dc.subject.otherGait recognitiones_ES
dc.subject.otherTrackletses_ES
dc.subject.otherDTFes_ES
dc.subject.otherMetric learninges_ES
dc.subject.otherBinarizationes_ES
dc.titleOn how to improve tracklet-based gait recognition systemses_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationbed8ca48-652e-4212-8c3c-05bfdc85a378
relation.isAuthorOfPublication.latestForDiscoverybed8ca48-652e-4212-8c3c-05bfdc85a378

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
prl2015web.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format
Description:

Collections