Polarization insensitive metamaterial engineered multimode interference coupler in a 220 nm silicon-on-insulator platform

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

High-index contrast silicon waveguides exhibit strong birefringence that hinders the development of polarization-insensitive devices, especially for sub-micrometer silicon layer thickness. Here a polarizationindependent 2 × 2 multimode interference coupler in a 220 nm silicon-on-insulator platform is designed and experimentally demonstrated for the first time. Leveraging the advanced control of electromagnetic properties provided by a subwavelength grating metamaterial topology, our multimode interference coupler operates for both TE and TM polarization states with measured polarization dependent loss, insertion loss and imbalance all less than 1 dB, and phase errors below 5◦ in the wavelength range from 1500 nm to 1560 nm. The device has a footprint of only 3.5 μm × 47.25 μm and was fabricated using a single etch-step process with a minimum feature size of 100 nm compatible with immersion deep-UV lithography.

Description

Bibliographic citation

Carlos Pérez-Armenta, Alejandro Ortega-Moñux, José Manuel Luque-González, Robert Halir, Jens Schmid, Pavel Cheben, Iñigo Molina-Fernández, J. Gonzalo Wangüemert-Pérez, Polarization insensitive metamaterial engineered multimode interference coupler in a 220 nm silicon-on-insulator platform, Optics & Laser Technology, Volume 164, 2023, 109493, ISSN 0030-3992, https://doi.org/10.1016/j.optlastec.2023.109493. (https://www.sciencedirect.com/science/article/pii/S0030399223003869)

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional