Unifying Chance-Constrained and Robust Optimal Power Flow for Resilient Network Operations.
| dc.centro | Facultad de Ciencias | es_ES |
| dc.contributor.author | Porras, Álvaro | |
| dc.contributor.author | Roald, Line | |
| dc.contributor.author | Morales-González, Juan Miguel | |
| dc.contributor.author | Pineda-Morente, Salvador | |
| dc.date.accessioned | 2024-08-28T11:58:19Z | |
| dc.date.available | 2024-08-28T11:58:19Z | |
| dc.date.issued | 2024 | |
| dc.departamento | Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada | |
| dc.description | Política de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/37938 (accepted version, pathway c) | es_ES |
| dc.description.abstract | Uncertainty in renewable energy generation has the potential to adversely impact the operation of electric networks. Numerous approaches to manage this impact have been proposed, ranging from stochastic and chance-constrained programming to robust optimization. However, these approaches either tend to be conservative or leave the system vulnerable to low probability, high impact uncertainty realizations. To address this issue, we propose a new formulation for stochastic optimal power flow that explicitly distinguishes between “normal operation”, in which automatic generation control (AGC) is sufficient to guarantee system security, and “adverse operation”, in which the system operator is required to take additional actions, e.g., manual reserve deployment. The new formulation has been compared with the classical ones in a case study on the IEEE-118 and IEEE-300 bus systems. We observe that our consideration of extreme scenarios enables solutions that are more secure than typical chance-constrained formulations, yet less costly than solutions that guarantee robust feasibility with only AGC. | es_ES |
| dc.description.sponsorship | Ministerio de Ciencia e Innovación de España (AEI/10.13039/501100011033): proyectos PID2020-115460GB-I00 y PID2023-148291NB-I00, y ayuda FPU19/03053. Consejo Europeo de Investigaciones Científicas (ERC), programa Horizonte 2020 de la UE, ayuda No 755705. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program (USA): Contract Number DE-AC02-06CH11347. Universidad de Málaga SCBI, Centro de Supercomputación. | es_ES |
| dc.identifier.citation | Á. Porras, L. Roald, J. M. Morales and S. Pineda, "Unifying Chance-Constrained and Robust Optimal Power Flow for Resilient Network Operations," in IEEE Transactions on Control of Network Systems, doi: 10.1109/TCNS.2024.3432188. | es_ES |
| dc.identifier.doi | 10.1109/TCNS.2024.3432188 | |
| dc.identifier.uri | https://hdl.handle.net/10630/32460 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | IEEE | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Optimización matemática | es_ES |
| dc.subject | Recursos energéticos renovables | es_ES |
| dc.subject | Ingeniería eléctrica - Matemáticas | es_ES |
| dc.subject.other | Optimal power flow | es_ES |
| dc.subject.other | Chance constraints | es_ES |
| dc.subject.other | Automatic generation control | es_ES |
| dc.subject.other | Manual adjustment | es_ES |
| dc.subject.other | Wind power | es_ES |
| dc.title | Unifying Chance-Constrained and Robust Optimal Power Flow for Resilient Network Operations. | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | AM | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 21d3b665-5e30-48ed-83c0-c14b65100f6c | |
| relation.isAuthorOfPublication | 9c6082a4-a90d-4334-ad6b-990773721156 | |
| relation.isAuthorOfPublication.latestForDiscovery | 21d3b665-5e30-48ed-83c0-c14b65100f6c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- TCNS3432188.pdf
- Size:
- 753.9 KB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo principal
Description: Artículo principal

