Uncovering True Significant Trends in Global Greening.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Authors

Gutiérrez-Hernández, Oliver
García, Luís V.

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

The global greening trend, marked by significant increases in vegetation cover across ecoregions, has attracted widespread attention. However, even robust traditional methods, like the non-parametric Mann-Kendall test, often overlook crucial factors such as serial correlation, spatial autocorrelation, and multiple testing, particularly in spatially gridded data. This oversight can lead to inflated significance of detected spatiotemporal trends. To address these limitations, this research introduces the True Significant Trends (TST) workflow, which enhances the conventional approach by incorporating pre-whitening to control for serial correlation, Theil-Sen (TS) slope for robust trend estimation, the Contextual Mann-Kendall (CMK) test to account for spatial and cross-correlation, and the adaptive False Discovery Rate (FDR) correction. Using AVHRR NDVI data over 42 years (1982–2023), we found that conventional workflow identified up to 50.96% of the Earth's terrestrial land surface as experiencing statistically significant vegetation trends. In contrast, the TST workflow reduced this to 38.16%, effectively filtering out spurious trends and providing a more accurate assessment. Among these significant trends identified using the TST workflow, 76.07% indicated greening, while 23.93% indicated browning. Notably, considering areas (pixels) with NDVI values above 0.15, greening accounted for 85.43% of the significant trends, with browning making up the remaining 14.57%. These findings strongly validate the ongoing global greening of vegetation. They also suggest that incorporating more robust analytical methods, such as the True Significant Trends (TST) approach, could significantly improve the accuracy and reliability of spatiotemporal trend analyses

Description

Bibliographic citation

Gutiérrez-Hernández, O., García, L. v. (2024). Uncovering True Significant Trends in Global Greening. Remote Sensing Applications: Society and Environment, 37-101377. DOI: https://doi.org/10.1016/j.rsase.2024.101377

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional