Uncovering True Significant Trends in Global Greening.

dc.centroFacultad de Filosofía y Letrases_ES
dc.contributor.authorGutiérrez-Hernández, Oliver
dc.contributor.authorGarcía, Luís V.
dc.date.accessioned2024-11-22T09:55:20Z
dc.date.available2024-11-22T09:55:20Z
dc.date.issued2024
dc.departamentoGeografía
dc.description.abstractThe global greening trend, marked by significant increases in vegetation cover across ecoregions, has attracted widespread attention. However, even robust traditional methods, like the non-parametric Mann-Kendall test, often overlook crucial factors such as serial correlation, spatial autocorrelation, and multiple testing, particularly in spatially gridded data. This oversight can lead to inflated significance of detected spatiotemporal trends. To address these limitations, this research introduces the True Significant Trends (TST) workflow, which enhances the conventional approach by incorporating pre-whitening to control for serial correlation, Theil-Sen (TS) slope for robust trend estimation, the Contextual Mann-Kendall (CMK) test to account for spatial and cross-correlation, and the adaptive False Discovery Rate (FDR) correction. Using AVHRR NDVI data over 42 years (1982–2023), we found that conventional workflow identified up to 50.96% of the Earth's terrestrial land surface as experiencing statistically significant vegetation trends. In contrast, the TST workflow reduced this to 38.16%, effectively filtering out spurious trends and providing a more accurate assessment. Among these significant trends identified using the TST workflow, 76.07% indicated greening, while 23.93% indicated browning. Notably, considering areas (pixels) with NDVI values above 0.15, greening accounted for 85.43% of the significant trends, with browning making up the remaining 14.57%. These findings strongly validate the ongoing global greening of vegetation. They also suggest that incorporating more robust analytical methods, such as the True Significant Trends (TST) approach, could significantly improve the accuracy and reliability of spatiotemporal trend analyseses_ES
dc.description.sponsorshipThis publication has been funded by the Universidad de Málaga and the Consorcio de Bibliotecas Universitarias de Andalucía (CBUA) to support its open-access publication.es_ES
dc.identifier.citationGutiérrez-Hernández, O., García, L. v. (2024). Uncovering True Significant Trends in Global Greening. Remote Sensing Applications: Society and Environment, 37-101377. DOI: https://doi.org/10.1016/j.rsase.2024.101377es_ES
dc.identifier.doi10.1016/j.rsase.2024.101377
dc.identifier.urihttps://hdl.handle.net/10630/35257
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBiogeografíaes_ES
dc.subjectSistemas de información geográficaes_ES
dc.subject.otherGlobal greeninges_ES
dc.subject.otherRemote sensinges_ES
dc.subject.otherSpatiotemporal trendses_ES
dc.subject.otherPre-whiteninges_ES
dc.subject.otherTheil-sen (TS)es_ES
dc.subject.otherContextual mann-kendall (CMK)es_ES
dc.subject.otherAdaptive false discovery rate (FDR)es_ES
dc.titleUncovering True Significant Trends in Global Greening.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S2352938524002416-main.pdf
Size:
2.51 MB
Format:
Adobe Portable Document Format
Description:
Artículo
Download

Description: Artículo

Collections