Fractional derivative description of the bloch space

dc.centroFacultad de Cienciases_ES
dc.contributor.authorMoreno, Álvaro Miguel
dc.contributor.authorPeláez-Márquez, José Ángel
dc.contributor.authorDe la Rosa, Elena
dc.date.accessioned2024-01-26T10:36:46Z
dc.date.available2024-01-26T10:36:46Z
dc.date.issued2024-01-09
dc.departamentoAnálisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada
dc.description.abstractWe establish new characterizations of the Bloch space B which include descriptions in terms of classical fractional derivatives. Being precise, for an analytic function f (z) = E∞n=0 ^f(n)zn in the unit disc D, we define the fractional derivative Dμ( f )(z) = ∞E n=0 ^f (n)/μ2n+1 zn induced by a radial weight μ, where μ2n+1 = S01r 2n+1μ(r) dr are the odd moments of μ. Then, we consider the space Bμ of analytic functions f in D such that f Bμ =supz∈D μ(z)|Dμ( f )(z)| < ∞, where μ(z) = S1 |z| μ(s) ds. We prove that Bμ is continously embedded in B for any radial weight μ, and B = Bμ if and only if μ ∈ D = D ∩ Dq. A radial weight μ ∈ D if sup0≤r<1 μ(r) μ (1+r/2) < ∞ and a radial weight μ ∈ Dq if there exist K = K(μ) > 1 such that inf0≤r<1 μ(r) μ (1− 1−r/K) > 1.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad Málaga/CBUA. This research was supported in part by Ministerio de Ciencia e Innovación, Spain, project PID2022-136619NB-I00; La Junta de Andalucía, project FQM210.es_ES
dc.identifier.citationMoreno, Á.M., Peláez, J.Á. & de la Rosa, E. Fractional Derivative Description of the Bloch Space. Potential Anal (2024). https://doi.org/10.1007/s11118-023-10119-zes_ES
dc.identifier.doi10.1007/s11118-023-10119-z
dc.identifier.urihttps://hdl.handle.net/10630/29279
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFunciones (Matemáticas)es_ES
dc.subjectNúmeros complejoses_ES
dc.subjectFunciones de variable complejaes_ES
dc.subject.otherFractional derivativees_ES
dc.subject.otherBloch spacees_ES
dc.subject.otherRadial weightes_ES
dc.subject.otherDoubling weightes_ES
dc.titleFractional derivative description of the bloch spacees_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication0bd5c162-fae0-458f-9ff2-42c98e3cd63a
relation.isAuthorOfPublication.latestForDiscovery0bd5c162-fae0-458f-9ff2-42c98e3cd63a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11118-023-10119-z (1).pdf
Size:
345.11 KB
Format:
Adobe Portable Document Format
Description:

Collections