Fractional derivative description of the bloch space
| dc.centro | Facultad de Ciencias | es_ES |
| dc.contributor.author | Moreno, Álvaro Miguel | |
| dc.contributor.author | Peláez-Márquez, José Ángel | |
| dc.contributor.author | De la Rosa, Elena | |
| dc.date.accessioned | 2024-01-26T10:36:46Z | |
| dc.date.available | 2024-01-26T10:36:46Z | |
| dc.date.issued | 2024-01-09 | |
| dc.departamento | Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada | |
| dc.description.abstract | We establish new characterizations of the Bloch space B which include descriptions in terms of classical fractional derivatives. Being precise, for an analytic function f (z) = E∞n=0 ^f(n)zn in the unit disc D, we define the fractional derivative Dμ( f )(z) = ∞E n=0 ^f (n)/μ2n+1 zn induced by a radial weight μ, where μ2n+1 = S01r 2n+1μ(r) dr are the odd moments of μ. Then, we consider the space Bμ of analytic functions f in D such that f Bμ =supz∈D μ(z)|Dμ( f )(z)| < ∞, where μ(z) = S1 |z| μ(s) ds. We prove that Bμ is continously embedded in B for any radial weight μ, and B = Bμ if and only if μ ∈ D = D ∩ Dq. A radial weight μ ∈ D if sup0≤r<1 μ(r) μ (1+r/2) < ∞ and a radial weight μ ∈ Dq if there exist K = K(μ) > 1 such that inf0≤r<1 μ(r) μ (1− 1−r/K) > 1. | es_ES |
| dc.description.sponsorship | Funding for open access charge: Universidad Málaga/CBUA. This research was supported in part by Ministerio de Ciencia e Innovación, Spain, project PID2022-136619NB-I00; La Junta de Andalucía, project FQM210. | es_ES |
| dc.identifier.citation | Moreno, Á.M., Peláez, J.Á. & de la Rosa, E. Fractional Derivative Description of the Bloch Space. Potential Anal (2024). https://doi.org/10.1007/s11118-023-10119-z | es_ES |
| dc.identifier.doi | 10.1007/s11118-023-10119-z | |
| dc.identifier.uri | https://hdl.handle.net/10630/29279 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer Nature | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Funciones (Matemáticas) | es_ES |
| dc.subject | Números complejos | es_ES |
| dc.subject | Funciones de variable compleja | es_ES |
| dc.subject.other | Fractional derivative | es_ES |
| dc.subject.other | Bloch space | es_ES |
| dc.subject.other | Radial weight | es_ES |
| dc.subject.other | Doubling weight | es_ES |
| dc.title | Fractional derivative description of the bloch space | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 0bd5c162-fae0-458f-9ff2-42c98e3cd63a | |
| relation.isAuthorOfPublication.latestForDiscovery | 0bd5c162-fae0-458f-9ff2-42c98e3cd63a |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s11118-023-10119-z (1).pdf
- Size:
- 345.11 KB
- Format:
- Adobe Portable Document Format
- Description:

