Time series analysis acceleration with advanced vectorization extensions

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

Time series analysis is an important research topic and a key step in monitoring and predicting events in many felds. Recently, the Matrix Profle method, and particularly two of its Euclidean-distance-based implementations—SCRIMP and SCAMP—have become the state-of-the-art approaches in this feld. Those algorithms bring the possibility of obtaining exact motifs and discords from a time series, which can be used to infer events, predict outcomes, detect anomalies and more. While matrix profle is embarrassingly parallelizable, we fnd that auto-vectorization techniques fail to fully exploit the SIMD capabilities of modern CPU architectures. In this paper, we develop custom-vectorized SCRIMP and SCAMP implementations based on AVX2 and AVX-512 extensions, which we combine with multithreading techniques aimed at exploiting the potential of the underneath architectures. Our experimental evaluation, conducted using real data, shows a performance improvement of more than 4× with respect to the auto-vectorization.

Description

Bibliographic citation

Quislant, R., Fernandez, I., Gutierrez, E. et al. Time series analysis acceleration with advanced vectorization extensions. J Supercomput (2023). https://doi.org/10.1007/s11227-023-05060-2

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Atribución 4.0 Internacional