Time series analysis acceleration with advanced vectorization extensions

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorQuislant-del-Barrio, Ricardo
dc.contributor.authorFernández-Vega, Iván
dc.contributor.authorGutiérrez-Carrasco, Eladio Damián
dc.contributor.authorPlata-González, Óscar Guillermo
dc.date.accessioned2023-04-24T10:58:00Z
dc.date.available2023-04-24T10:58:00Z
dc.date.issued2023
dc.departamentoArquitectura de Computadores
dc.description.abstractTime series analysis is an important research topic and a key step in monitoring and predicting events in many felds. Recently, the Matrix Profle method, and particularly two of its Euclidean-distance-based implementations—SCRIMP and SCAMP—have become the state-of-the-art approaches in this feld. Those algorithms bring the possibility of obtaining exact motifs and discords from a time series, which can be used to infer events, predict outcomes, detect anomalies and more. While matrix profle is embarrassingly parallelizable, we fnd that auto-vectorization techniques fail to fully exploit the SIMD capabilities of modern CPU architectures. In this paper, we develop custom-vectorized SCRIMP and SCAMP implementations based on AVX2 and AVX-512 extensions, which we combine with multithreading techniques aimed at exploiting the potential of the underneath architectures. Our experimental evaluation, conducted using real data, shows a performance improvement of more than 4× with respect to the auto-vectorization.es_ES
dc.description.sponsorshipFunding for open access publishing: Universidad Málaga/CBUAes_ES
dc.identifier.citationQuislant, R., Fernandez, I., Gutierrez, E. et al. Time series analysis acceleration with advanced vectorization extensions. J Supercomput (2023). https://doi.org/10.1007/s11227-023-05060-2es_ES
dc.identifier.doi10.1007/s11227-023-05060-2
dc.identifier.urihttps://hdl.handle.net/10630/26387
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectProceso de vectores (Informática)es_ES
dc.subject.otherTime series analysises_ES
dc.subject.otherMatrix proflees_ES
dc.subject.otherParallelismes_ES
dc.subject.otherVectorizationes_ES
dc.titleTime series analysis acceleration with advanced vectorization extensionses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc6edf3ab-5134-4c07-943b-bfca90d13f34
relation.isAuthorOfPublicationf3eeec7d-5b4e-4ca9-abad-3cb620f46252
relation.isAuthorOfPublication34b85e22-88ce-4035-a53e-2bafb0c3310b
relation.isAuthorOfPublication.latestForDiscoveryc6edf3ab-5134-4c07-943b-bfca90d13f34

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11227-023-05060-2.pdf
Size:
3.01 MB
Format:
Adobe Portable Document Format
Description:

Collections