Asignación de cabezales radio a procesadores banda base mediante redes neuronales de grafos.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

In 5G networks, Cloud-Radio Access Network (C-RAN) architecture divides legacy base stations into Radio Remote Heads (RRH) and Base Band Units (BBU). RRHs transmit and receive radio signals, whereas BBUs process those signals. Thus, BBUs can be centralized in cloud processing centers serving different groups of RRHs. An adequate allocation of RRHs to BBUs is essential to guarantee C-RAN performance. With the latest advances in machine learning, this task can be automatically addressed through supervised learning. This paper proposes a methodology for allocating RRHs to BBUs in heterogeneous cellular networks relying on graph partitioning through a graph neural network. Model performance is assessed over a dataset built with a radio planning tool that implements a realistic Long-Term Evolution (LTE) heterogeneous network. Results have shown that the proposed method improves performance of a patented state-of-theart tool based on graph partitioning.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by