Learning to shape beams: Using a neural network to control a beamforming antenna

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorFernández-Rodríguez, Jose David
dc.contributor.authorGarcía Aguilar, Iván
dc.contributor.authorLuque-Baena, Rafael Marcos
dc.contributor.authorLópez-Rubio, Ezequiel
dc.contributor.authorBaena-Molina, Marcos
dc.contributor.authorValenzuela-Valdés, Juan Francisco
dc.date.accessioned2025-09-16T10:18:42Z
dc.date.available2025-09-16T10:18:42Z
dc.date.issued2025-10
dc.departamentoLenguajes y Ciencias de la Computaciónes_ES
dc.description.abstractThe field of reconfigurable intelligent surfaces (RIS) has gained significant traction in recent years in the wireless communications domain, owing to the ability to dynamically reconfigure surfaces to change their electromagnetic radiance patterns in real-time. In this work, we propose utilizing a novel deep learning model that innovatively employs only the parameters of each signal or beam as input, eliminating the need for the entire one-dimensional signal or its diffusion map (two-dimensional information). This approach enhances efficiency and reduces the overall complexity of the model, drastically reducing network size and enabling its implementation on low-cost devices. Furthermore, to enhance training effectiveness, the learning model attempts to estimate the discrete cosine transform applied to the output matrix rather than the raw matrix, significantly improving the achieved accuracy. This scheme is validated on a 1-bit programmable metasurface of size 10 X 10, achieving an accuracy close to 95% using a K-fold methodology with K=10.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationJose David Fernández-Rodríguez, Iván García-Aguilar, Rafael Marcos Luque-Baena, Ezequiel López-Rubio, Marcos Baena-Molina, Juan Francisco Valenzuela-Valdés, Learning to shape beams: Using a neural network to control a beamforming antenna, Computer Networks, Volume 270, 2025, 111544, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2025.111544. (https://www.sciencedirect.com/science/article/pii/S1389128625005110)es_ES
dc.identifier.doi10.1016/j.comnet.2025.111544
dc.identifier.urihttps://hdl.handle.net/10630/39936
dc.language.isoenges_ES
dc.publisherELSEVIERes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLenguajes de programaciónes_ES
dc.subjectTelecomunicacioneses_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectAntenases_ES
dc.subject.otherBeamforminges_ES
dc.subject.otherNeural networkes_ES
dc.subject.otherDeep learninges_ES
dc.titleLearning to shape beams: Using a neural network to control a beamforming antennaes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication15881531-a431-477b-80d6-532058d8377c
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication.latestForDiscovery15881531-a431-477b-80d6-532058d8377c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1389128625005110-main.pdf
Size:
3.5 MB
Format:
Adobe Portable Document Format
Description:

Collections