Pointwise multipliers between spaces of analytic functions.

dc.centroFacultad de Cienciases_ES
dc.contributor.authorGirela-Álvarez, Daniel
dc.contributor.authorMerchán-Álvarez, Noel
dc.date.accessioned2024-07-19T07:08:15Z
dc.date.available2024-07-19T07:08:15Z
dc.date.issued2023-07-13
dc.departamentoMatemática Aplicada
dc.descriptionPolítica de acceso abierto tomada: https://v2.sherpa.ac.uk/id/publication/305es_ES
dc.description.abstractA Banach space X of analytic function in D, the unit disc in C, is said to be admissible if it contains the polynomials and convergence in X implies uniform convergence in compact subsets of D. If X and Y are two admissible Banach spaces of analytic functions in D and g is a holomorphic function in D, g is said to be a multiplier from X to Y if g · f is in Y for every f in X. The space of all multipliers from X to Y is denoted M(X; Y ), and M(X) will stand for M(X;X). The closed graph theorem shows that if g is in M(X; Y ) then the multiplication operator Mg, defi ned by Mg(f) = g · f, is a bounded operator from X into Y. It is known that M(X) c H^inf and that if g is in M(X), then ∥g∥_H^inf <= ∥Mg∥. Clearly, this implies that M(X; Y ) c H^inf if Y c X. If Y is not contained in X, the inclusion M(X; Y ) c H^inf may not be true. In this paper we start presenting a number of conditions on the spaces X and Y which imply that the inclusion M(X; Y ) c H^inf holds. Next, we concentrate our attention on multipliers acting an BMOA and some related spaces, namely, the Qs-spaces (0 < s < 1).es_ES
dc.description.sponsorship"El Ministerio de Economía y Competitividad", España (PGC2018-096166-B-I00) y ayudas de "la Junta de Andalucía (FQM-210 y UMA18-FEDERJA-002).es_ES
dc.identifier.citationGirela, D., & Merchán, N. (2023). Pointwise multipliers between spaces of analytic functions. Quaestiones Mathematicae, 47(2), 249–262.es_ES
dc.identifier.doi10.2989/16073606.2023.2223766
dc.identifier.urihttps://hdl.handle.net/10630/32244
dc.language.isoenges_ES
dc.publisherTaylor & Francises_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFunciones analíticases_ES
dc.subjectMultiplicadores (Análisis matemático)es_ES
dc.subject.otherSpaces of analytic functionses_ES
dc.subject.otherBloches_ES
dc.subject.otherBMOAes_ES
dc.subject.otherQs spaceses_ES
dc.subject.otherPointwise multiplierses_ES
dc.subject.otherConformally invariant spaceses_ES
dc.titlePointwise multipliers between spaces of analytic functions.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication20358c49-a3a2-47fd-892b-c73fdbc2870d
relation.isAuthorOfPublication702b63a6-e9ef-456c-abc1-e14bf3da3166
relation.isAuthorOfPublication.latestForDiscovery20358c49-a3a2-47fd-892b-c73fdbc2870d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GM-Multipliers-04-11-2022.pdf
Size:
409.93 KB
Format:
Adobe Portable Document Format
Description:
Versión aceptada antes de ser publicada
Download

Description: Versión aceptada antes de ser publicada

Collections