Pointwise multipliers between spaces of analytic functions.
| dc.centro | Facultad de Ciencias | es_ES |
| dc.contributor.author | Girela-Álvarez, Daniel | |
| dc.contributor.author | Merchán-Álvarez, Noel | |
| dc.date.accessioned | 2024-07-19T07:08:15Z | |
| dc.date.available | 2024-07-19T07:08:15Z | |
| dc.date.issued | 2023-07-13 | |
| dc.departamento | Matemática Aplicada | |
| dc.description | Política de acceso abierto tomada: https://v2.sherpa.ac.uk/id/publication/305 | es_ES |
| dc.description.abstract | A Banach space X of analytic function in D, the unit disc in C, is said to be admissible if it contains the polynomials and convergence in X implies uniform convergence in compact subsets of D. If X and Y are two admissible Banach spaces of analytic functions in D and g is a holomorphic function in D, g is said to be a multiplier from X to Y if g · f is in Y for every f in X. The space of all multipliers from X to Y is denoted M(X; Y ), and M(X) will stand for M(X;X). The closed graph theorem shows that if g is in M(X; Y ) then the multiplication operator Mg, defi ned by Mg(f) = g · f, is a bounded operator from X into Y. It is known that M(X) c H^inf and that if g is in M(X), then ∥g∥_H^inf <= ∥Mg∥. Clearly, this implies that M(X; Y ) c H^inf if Y c X. If Y is not contained in X, the inclusion M(X; Y ) c H^inf may not be true. In this paper we start presenting a number of conditions on the spaces X and Y which imply that the inclusion M(X; Y ) c H^inf holds. Next, we concentrate our attention on multipliers acting an BMOA and some related spaces, namely, the Qs-spaces (0 < s < 1). | es_ES |
| dc.description.sponsorship | "El Ministerio de Economía y Competitividad", España (PGC2018-096166-B-I00) y ayudas de "la Junta de Andalucía (FQM-210 y UMA18-FEDERJA-002). | es_ES |
| dc.identifier.citation | Girela, D., & Merchán, N. (2023). Pointwise multipliers between spaces of analytic functions. Quaestiones Mathematicae, 47(2), 249–262. | es_ES |
| dc.identifier.doi | 10.2989/16073606.2023.2223766 | |
| dc.identifier.uri | https://hdl.handle.net/10630/32244 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Taylor & Francis | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Funciones analíticas | es_ES |
| dc.subject | Multiplicadores (Análisis matemático) | es_ES |
| dc.subject.other | Spaces of analytic functions | es_ES |
| dc.subject.other | Bloch | es_ES |
| dc.subject.other | BMOA | es_ES |
| dc.subject.other | Qs spaces | es_ES |
| dc.subject.other | Pointwise multipliers | es_ES |
| dc.subject.other | Conformally invariant spaces | es_ES |
| dc.title | Pointwise multipliers between spaces of analytic functions. | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | AM | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 20358c49-a3a2-47fd-892b-c73fdbc2870d | |
| relation.isAuthorOfPublication | 702b63a6-e9ef-456c-abc1-e14bf3da3166 | |
| relation.isAuthorOfPublication.latestForDiscovery | 20358c49-a3a2-47fd-892b-c73fdbc2870d |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- GM-Multipliers-04-11-2022.pdf
- Size:
- 409.93 KB
- Format:
- Adobe Portable Document Format
- Description:
- Versión aceptada antes de ser publicada
Description: Versión aceptada antes de ser publicada

