Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorSaborido Infantes, Rubén
dc.contributor.authorRuiz, Ana B.
dc.contributor.authorBermúdez, José D.
dc.contributor.authorVercher, Enriqueta
dc.contributor.authorLuque-Gallego, Mariano
dc.date.accessioned2024-09-30T11:55:25Z
dc.date.available2024-09-30T11:55:25Z
dc.date.issued2015
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractIn this paper, we consider a recently proposed model for portfolio selection, called Mean-Downside Risk-Skewness (MDRS) model. This modelling approach takes into account both the multidimensional nature of the portfolio selection problem and the requirements imposed by the investor. Concretely, it optimizes the expected return, the downside-risk and the skewness of a given portfolio, taking into account budget, bound and cardinality constraints. The quantification of the uncertain future return on a given portfolio is approximated by means of LR-fuzzy numbers, while the moments of its return are evaluated using possibility theory. The main purpose of this paper is to solve the MDRS portfolio selection model as a whole constrained three-objective optimization problem, what has not been done before, in order to analyse the efficient portfolios which optimize the three criteria simultaneously. For this aim, we propose new mutation, crossover and reparation operators for evolutionary multi-objective optimization, which have been specially designed for generating feasible solutions of the cardinality constrained MDRS problem. We incorporate the operators suggested into the evolutionary algorithms NSGAII, MOEA/D and GWASF-GA and we analyse their performances for a data set from the Spanish stock market. The potential of our operators is shown in comparison to other commonly used genetic operators and some conclusions are highlighted from the analysis of the trade-offs among the three criteria.es_ES
dc.identifier.citationSaborido, R., Ruiz, A. B., Bermúdez, J. D., Vercher, E., & Luque, M. (2015). Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Applied Soft Computing, 39, 48-63. https://doi.org/10.1016/j.asoc.2015.11.005es_ES
dc.identifier.doihttps://doi.org/10.1016/j.asoc.2015.11.005
dc.identifier.urihttps://hdl.handle.net/10630/34050
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAlgoritmoses_ES
dc.subjectComputación evolutivaes_ES
dc.subject.otherEfficient portfolio selectiones_ES
dc.subject.otherEvolutionary optimizationes_ES
dc.subject.otherPossibility distributionses_ES
dc.subject.otherLR-fuzzy numberses_ES
dc.titleEvolutionary multi-objective optimization algorithms for fuzzy portfolio selectiones_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication39347849-2655-4c96-b184-737a7a0673f2
relation.isAuthorOfPublication.latestForDiscovery39347849-2655-4c96-b184-737a7a0673f2

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Evolutionary Multiobjective Optimization algorithms for fuzzy portfolio selection.pdf
Size:
429.31 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections