Best rank k approximation for binary forms.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Center

Department/Institute

Abstract

In the tensor space SymdR2 of binary forms we study the best rank k approximation problem. The critical points of the best rank 1 approximation problem are the eigenvectors and it is known that they span a hyperplane. We prove that the critical points of the best rank k approximation problem lie in the same hyperplane. As a consequence, every binary form may be written as linear combination of its critical rank 1 tensors, which extends the Spectral Theorem from quadratic forms to binary forms of any degree. In the same vein, also the best rank k approximation may be written as a linear combination of the critical rank 1 tensors, which extends the Eckart–Young theorem from matrices to binary forms.

Description

Política de acceso abierto tomada de: https://www.sherpa.ac.uk/id/publication/28186

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by