Best rank k approximation for binary forms.

dc.contributor.authorOttaviani, Giorgio
dc.contributor.authorTocino-Sánchez, Alicia
dc.date.accessioned2024-09-23T09:31:47Z
dc.date.available2024-09-23T09:31:47Z
dc.date.issued2017-09-11
dc.departamentoMatemática Aplicada
dc.descriptionPolítica de acceso abierto tomada de: https://www.sherpa.ac.uk/id/publication/28186es_ES
dc.description.abstractIn the tensor space SymdR2 of binary forms we study the best rank k approximation problem. The critical points of the best rank 1 approximation problem are the eigenvectors and it is known that they span a hyperplane. We prove that the critical points of the best rank k approximation problem lie in the same hyperplane. As a consequence, every binary form may be written as linear combination of its critical rank 1 tensors, which extends the Spectral Theorem from quadratic forms to binary forms of any degree. In the same vein, also the best rank k approximation may be written as a linear combination of the critical rank 1 tensors, which extends the Eckart–Young theorem from matrices to binary forms.es_ES
dc.identifier.doi10.1007/s13348-017-0206-6
dc.identifier.urihttps://hdl.handle.net/10630/32831
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectÁlgebra lineales_ES
dc.subject.otherCritical pointses_ES
dc.subject.otherApproximation problemes_ES
dc.subject.otherEigenvectorses_ES
dc.subject.otherBinary formses_ES
dc.subject.otherEckart–Young theoremes_ES
dc.subject.otherSpectral theoremes_ES
dc.titleBest rank k approximation for binary forms.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc35dd6ed-eb9a-4f1c-a212-0720020fda9a
relation.isAuthorOfPublication.latestForDiscoveryc35dd6ed-eb9a-4f1c-a212-0720020fda9a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bestrankapproxbinary2018.pdf
Size:
369.3 KB
Format:
Adobe Portable Document Format
Description:

Collections