Best rank k approximation for binary forms.
| dc.contributor.author | Ottaviani, Giorgio | |
| dc.contributor.author | Tocino-Sánchez, Alicia | |
| dc.date.accessioned | 2024-09-23T09:31:47Z | |
| dc.date.available | 2024-09-23T09:31:47Z | |
| dc.date.issued | 2017-09-11 | |
| dc.departamento | Matemática Aplicada | |
| dc.description | Política de acceso abierto tomada de: https://www.sherpa.ac.uk/id/publication/28186 | es_ES |
| dc.description.abstract | In the tensor space SymdR2 of binary forms we study the best rank k approximation problem. The critical points of the best rank 1 approximation problem are the eigenvectors and it is known that they span a hyperplane. We prove that the critical points of the best rank k approximation problem lie in the same hyperplane. As a consequence, every binary form may be written as linear combination of its critical rank 1 tensors, which extends the Spectral Theorem from quadratic forms to binary forms of any degree. In the same vein, also the best rank k approximation may be written as a linear combination of the critical rank 1 tensors, which extends the Eckart–Young theorem from matrices to binary forms. | es_ES |
| dc.identifier.doi | 10.1007/s13348-017-0206-6 | |
| dc.identifier.uri | https://hdl.handle.net/10630/32831 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer Nature | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Álgebra lineal | es_ES |
| dc.subject.other | Critical points | es_ES |
| dc.subject.other | Approximation problem | es_ES |
| dc.subject.other | Eigenvectors | es_ES |
| dc.subject.other | Binary forms | es_ES |
| dc.subject.other | Eckart–Young theorem | es_ES |
| dc.subject.other | Spectral theorem | es_ES |
| dc.title | Best rank k approximation for binary forms. | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | AM | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | c35dd6ed-eb9a-4f1c-a212-0720020fda9a | |
| relation.isAuthorOfPublication.latestForDiscovery | c35dd6ed-eb9a-4f1c-a212-0720020fda9a |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- bestrankapproxbinary2018.pdf
- Size:
- 369.3 KB
- Format:
- Adobe Portable Document Format
- Description:

