Modelling Slice Performance in Radio Access Networks through Supervised Learning

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

In 5G systems, the Network Slicing (NS) feature allows to deploy several logical networks customized for specific verticals over a common physical infrastructure. To make the most of this feature, cellular operators need models reflecting performance at slice level for re-dimensioning the Radio Access Network (RAN). Throughput is often regarded as a key perfor- mance metric due its strong impact on users demanding enhanced mobility broadband services. In this work, we present the first comprehensive analysis tackling slice throughput estimation in the down link of RAN-sliced networks through Supervised Learning (SL), based on information collected in the operations support system. The considered SL algorithms include support vector regression, k-nearest neighbors, ensemble methods based on decision trees and neural networks. All these algorithms are tested in two NS scenarios with single-service and multi-service slices. To this end, synthetic datasets with performance indicators and connection traces are generated with a system-level simulator emulating the activity of a live cellular network. Results show that the best model (i.e., combination of SL algorithm and input features) to estimate slice throughput may vary depending on the NS scenario. In all cases, the best models have shown adequate accuracy(i.e., error below 10%).

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by