Enhancing partition crossover with articulation points analysis

Loading...
Thumbnail Image

Files

pxap-gecco2018-riuma.pdf (842.96 KB)

Description: Texto del artículo

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Partition Crossover is a recombination operator for pseudo-Boolean optimization with the ability to explore an exponential number of solutions in linear or square time. It decomposes the objective function as a sum of subfunctions, each one depending on a different set of variables. The decomposition makes it possible to select the best parent for each subfunction independently, and the operator provides the best out of $2^q$ solutions, where $q$ is the number of subfunctions in the decomposition. These subfunctions are defined over the connected components of the recombination graph: a subgraph of the objective function variable interaction graph containing only the differing variables in the two parents. In this paper, we advance further and propose a new way to increase the number of linearly independent subfunctions by analyzing the articulation points of the recombination graph. These points correspond to variables that, once flipped, increase the number of connected components. The presence of a connected component with an articulation point increases the number of explored solutions by a factor of, at least, 4. We evaluate the new operator using Iterated Local Search combined with Partition Crossover to solve NK Landscapes and MAX-SAT.

Description

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional