Enhancing partition crossover with articulation points analysis

dc.centroE.T.S.I. Informáticaen_US
dc.contributor.authorChicano-García, José-Francisco
dc.contributor.authorOchoa, Gabriela
dc.contributor.authorWhitley, L. Darrell
dc.contributor.authorTinós, Renato
dc.date.accessioned2018-07-25T07:29:18Z
dc.date.available2018-07-25T07:29:18Z
dc.date.created2018
dc.date.issued2018-07-25
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractPartition Crossover is a recombination operator for pseudo-Boolean optimization with the ability to explore an exponential number of solutions in linear or square time. It decomposes the objective function as a sum of subfunctions, each one depending on a different set of variables. The decomposition makes it possible to select the best parent for each subfunction independently, and the operator provides the best out of $2^q$ solutions, where $q$ is the number of subfunctions in the decomposition. These subfunctions are defined over the connected components of the recombination graph: a subgraph of the objective function variable interaction graph containing only the differing variables in the two parents. In this paper, we advance further and propose a new way to increase the number of linearly independent subfunctions by analyzing the articulation points of the recombination graph. These points correspond to variables that, once flipped, increase the number of connected components. The presence of a connected component with an articulation point increases the number of explored solutions by a factor of, at least, 4. We evaluate the new operator using Iterated Local Search combined with Partition Crossover to solve NK Landscapes and MAX-SAT.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Funding was provided by the Fulbright program, the Spanish Ministry of Education, Culture and Sport (CAS12/00274), the Spanish Ministry of Economy and Competitiveness and FEDER (TIN2014-57341-R and TIN2017-88213-R), the Air Force Office of Scientific Research, (FA9550-11-1-0088), the Leverhulme Trust (RPG-2015-395), the FAPESP (2015/06462-1) and CNPq (304400/2014-9).en_US
dc.identifier.urihttps://hdl.handle.net/10630/16353
dc.language.isoengen_US
dc.relation.eventdatejulio de 2018en_US
dc.relation.eventplaceKyoto, Japónen_US
dc.relation.eventtitleGenetic and Evolutionary Computation Conferenceen_US
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.accessRightsopen accessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectComputación evolutivaen_US
dc.titleEnhancing partition crossover with articulation points analysisen_US
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication6f65e289-6502-4756-871c-dbe0ca9be545
relation.isAuthorOfPublication.latestForDiscovery6f65e289-6502-4756-871c-dbe0ca9be545

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pxap-gecco2018-riuma.pdf
Size:
842.96 KB
Format:
Adobe Portable Document Format
Description:
Texto del artículo
Download

Description: Texto del artículo

Collections