Automatic Generation of Labeled 3D Point Clouds of Natural Environments with Gazebo.
| dc.centro | Escuela de Ingenierías Industriales | es_ES |
| dc.contributor.author | Sánchez, Manuel | |
| dc.contributor.author | Martínez-Rodríguez, Jorge Luis | |
| dc.contributor.author | Morales-Rodríguez, Jesús | |
| dc.contributor.author | Robles, Alfredo | |
| dc.contributor.author | Moran Prados, Mariano | |
| dc.date.accessioned | 2024-02-01T11:56:02Z | |
| dc.date.available | 2024-02-01T11:56:02Z | |
| dc.date.issued | 2019-05-27 | |
| dc.departamento | Ingeniería de Sistemas y Automática | |
| dc.description | https://conferences.ieeeauthorcenter.ieee.org/author-ethics/guidelines-and-policies/post-publication-policies/#preprint | es_ES |
| dc.description.abstract | Progress in applying supervised learning for nat- ural scene classification is impeded by the lack of appropriate datasets for training. This paper describes the automatic generation of synthetic three-dimensional (3D) scans of natural environments with each point labelled individually with its element class. The developed software employs the robotic simulator Gazebo to obtain range and intensity measurements from a 3D laser rangefinder aboard a ground mobile robot. Precisely, the returned intensity values are used to annotate every 3D point within its corresponding class 100% error free. Several examples are provided to show the utility of the proposed approach. | es_ES |
| dc.identifier.citation | M. Sánchez, J. L. Martínez, J. Morales, A. Robles and M. Morán, "Automatic Generation of Labeled 3D Point Clouds of Natural Environments with Gazebo," 2019 IEEE International Conference on Mechatronics (ICM), Ilmenau, Germany, 2019, pp. 161-166, doi: 10.1109/ICMECH.2019.8722866. | es_ES |
| dc.identifier.doi | 10.1109/icmech.2019.8722866 | |
| dc.identifier.uri | https://hdl.handle.net/10630/29607 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | IEEE | es_ES |
| dc.relation.eventdate | 18-20 March 2019 | |
| dc.relation.eventplace | Ilmenau (Alemania) | |
| dc.relation.eventtitle | 2019 IEEE International Conference on Mechatronics (ICM) | |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Vehículos autodirigidos | es_ES |
| dc.subject | Aprendizaje automático (Inteligencia artificial) | es_ES |
| dc.subject.other | 3D laser rangefinder | es_ES |
| dc.subject.other | Autonomous ground vehicles | es_ES |
| dc.subject.other | Sensor simulation | es_ES |
| dc.subject.other | Supervised learning | es_ES |
| dc.title | Automatic Generation of Labeled 3D Point Clouds of Natural Environments with Gazebo. | es_ES |
| dc.type | conference output | es_ES |
| dc.type.hasVersion | SMUR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | f7f187bf-2543-410f-8e9e-d920911a5fd1 | |
| relation.isAuthorOfPublication | 14fa0e60-c422-48ee-8093-600fb95e788c | |
| relation.isAuthorOfPublication.latestForDiscovery | f7f187bf-2543-410f-8e9e-d920911a5fd1 |
Files
Original bundle
1 - 1 of 1

