Automatic Generation of Labeled 3D Point Clouds of Natural Environments with Gazebo.

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorSánchez, Manuel
dc.contributor.authorMartínez-Rodríguez, Jorge Luis
dc.contributor.authorMorales-Rodríguez, Jesús
dc.contributor.authorRobles, Alfredo
dc.contributor.authorMoran Prados, Mariano
dc.date.accessioned2024-02-01T11:56:02Z
dc.date.available2024-02-01T11:56:02Z
dc.date.issued2019-05-27
dc.departamentoIngeniería de Sistemas y Automática
dc.descriptionhttps://conferences.ieeeauthorcenter.ieee.org/author-ethics/guidelines-and-policies/post-publication-policies/#preprintes_ES
dc.description.abstractProgress in applying supervised learning for nat- ural scene classification is impeded by the lack of appropriate datasets for training. This paper describes the automatic generation of synthetic three-dimensional (3D) scans of natural environments with each point labelled individually with its element class. The developed software employs the robotic simulator Gazebo to obtain range and intensity measurements from a 3D laser rangefinder aboard a ground mobile robot. Precisely, the returned intensity values are used to annotate every 3D point within its corresponding class 100% error free. Several examples are provided to show the utility of the proposed approach.es_ES
dc.identifier.citationM. Sánchez, J. L. Martínez, J. Morales, A. Robles and M. Morán, "Automatic Generation of Labeled 3D Point Clouds of Natural Environments with Gazebo," 2019 IEEE International Conference on Mechatronics (ICM), Ilmenau, Germany, 2019, pp. 161-166, doi: 10.1109/ICMECH.2019.8722866.es_ES
dc.identifier.doi10.1109/icmech.2019.8722866
dc.identifier.urihttps://hdl.handle.net/10630/29607
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.eventdate18-20 March 2019
dc.relation.eventplaceIlmenau (Alemania)
dc.relation.eventtitle2019 IEEE International Conference on Mechatronics (ICM)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectVehículos autodirigidoses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.other3D laser rangefinderes_ES
dc.subject.otherAutonomous ground vehicleses_ES
dc.subject.otherSensor simulationes_ES
dc.subject.otherSupervised learninges_ES
dc.titleAutomatic Generation of Labeled 3D Point Clouds of Natural Environments with Gazebo.es_ES
dc.typeconference outputes_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationf7f187bf-2543-410f-8e9e-d920911a5fd1
relation.isAuthorOfPublication14fa0e60-c422-48ee-8093-600fb95e788c
relation.isAuthorOfPublication.latestForDiscoveryf7f187bf-2543-410f-8e9e-d920911a5fd1

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ICM19.pdf
Size:
16.77 MB
Format:
Adobe Portable Document Format
Description: