Enhanced generation of automatically labelled image segmentation datasets by advanced style interpreter deep architectures.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorPacheco dos Santos Lima Junior, Marcos Sergio
dc.contributor.authorLópez-Rubio, Ezequiel
dc.contributor.authorOrtiz-de-Lazcano-Lobato, Juan Miguel
dc.contributor.authorFernández-Rodríguez, Jose David
dc.date.accessioned2025-05-07T07:20:09Z
dc.date.available2025-05-07T07:20:09Z
dc.date.issued2025
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málagaes_ES
dc.departamentoLenguajes y Ciencias de la Computaciónes_ES
dc.description.abstractLarge image datasets with annotated pixel-level semantics are necessary to train and evaluate supervised deep-learning models. These datasets are very expensive in terms of the human effort required to build them. Still, recent developments such as DatasetGAN open the possibility of leveraging generative systems to automatically synthesise massive amounts of images along with pixel-level information. This work analyses DatasetGAN and proposes a novel architecture that utilises the semantic information of neighbouring pixels to achieve significantly better performance. Additionally, the overfitting observed in the original architecture is thoroughly investigated, and modifications are proposed to mitigate it. Furthermore, the implementation has been redesigned to greatly reduce the memory requirements of DatasetGAN, and a comprehensive study of the impact of the number of classes in the segmentation task is presented.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.description.sponsorshipThis work is partially supported by the Ministry of Science and Innovation of Spain [grant number PID2022-136764OA-I00], project name Automated Detection of Non Lesional Focal Epilepsy by Probabilistic Diffusion Deep Neural Models. It is also partially supported by the Autonomous Government of Andalusia (Spain) under project UMA18-FEDERJA-084, project name Detection of anomalous behaviour agents by deep learning in low-cost video surveillance intelligent systems. All of them include funds from the European Regional Development Fund (ERDF).es_ES
dc.identifier.citationMarcos Sergio Pacheco dos Santos Lima, Ezequiel López-Rubio, Juan Miguel Ortiz-de-Lazcano-Lobato, José David Fernández-Rodríguez, Enhanced generation of automatically labelled image segmentation datasets by advanced style interpreter deep architectures, Pattern Recognition Letters, Volume 193, 2025, Pages 101-107es_ES
dc.identifier.doi10.1016/j.patrec.2025.04.021
dc.identifier.urihttps://hdl.handle.net/10630/38505
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectRedes neuronales artificialeses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.otherImage segmentationes_ES
dc.subject.otherConvolutional neural networkses_ES
dc.titleEnhanced generation of automatically labelled image segmentation datasets by advanced style interpreter deep architectures.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication5d96d5b2-9546-44c8-a1b3-1044a3aee34f
relation.isAuthorOfPublication.latestForDiscoveryae409266-06a3-4cd4-84e8-fb88d4976b3f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Enhanced generation of automatically labelled image segmentation.pdf
Size:
3.9 MB
Format:
Adobe Portable Document Format
Description:

Collections