A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat

dc.centroFacultad de Cienciases_ES
dc.contributor.authorPerkins, James Richard
dc.contributor.authorAntunes-Martins, Ana
dc.contributor.authorCalvo, Margarita
dc.contributor.authorGrist, John
dc.contributor.authorRust, Werner
dc.contributor.authorSchmid, Ramona
dc.contributor.authorHildebrandt, Tobias
dc.contributor.authorKohl, Matthias
dc.contributor.authorOrengo, Christine A.
dc.contributor.authorMcMahon, Stephen B
dc.contributor.authorBennett, David LH
dc.date.accessioned2024-10-08T08:48:57Z
dc.date.available2024-10-08T08:48:57Z
dc.date.issued2014-01-28
dc.departamentoBiología Molecular y Bioquímica
dc.description.abstractThe past decade has seen an abundance of transcriptional profiling studies of preclinical models of persistent pain, predominantly employing microarray technology. In this study we directly compare exon microarrays to RNA-seq and investigate the ability of both platforms to detect differentially expressed genes following nerve injury using the L5 spinal nerve transection model of neuropathic pain. We also investigate the effects of increasing RNA-seq sequencing depth. Finally we take advantage of the "agnostic" approach of RNA-seq to discover areas of expression outside of annotated exons that show marked changes in expression following nerve injury. RNA-seq and microarrays largely agree in terms of the genes called as differentially expressed. However, RNA-seq is able to interrogate a much larger proportion of the genome. It can also detect a greater number of differentially expressed genes than microarrays, across a wider range of fold changes and is able to assign a larger range of expression values to the genes it measures. The number of differentially expressed genes detected increases with sequencing depth. RNA-seq also allows the discovery of a number of genes displaying unusual and interesting patterns of non-exonic expression following nerve injury, an effect that cannot be detected using microarrays. We recommend the use of RNA-seq for future high-throughput transcriptomic experiments in pain studies. RNA-seq allowed the identification of a larger number of putative candidate pain genes than microarrays and can also detect a wider range of expression values in a neuropathic pain model. In addition, RNA-seq can interrogate the whole genome regardless of prior annotations, being able to detect transcription from areas of the genome not currently annotated as exons. Some of these areas are differentially expressed following nerve injury, and may represent novel genes or isoforms.es_ES
dc.identifier.citationPerkins JR, Antunes-Martins A, Calvo M, et al. A Comparison of RNA-Seq and Exon Arrays for Whole Genome Transcription Profiling of the L5 Spinal Nerve Transection Model of Neuropathic Pain in the Rat. Molecular Pain. 2014;10. doi:10.1186/1744-8069-10-7es_ES
dc.identifier.doi10.1186/1744-8069-10-7
dc.identifier.urihttps://hdl.handle.net/10630/34479
dc.language.isoenges_ES
dc.publisherSAGE Publicationses_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectDolores_ES
dc.subjectExpresión génicaes_ES
dc.subjectSistema nervioso-Lesiones y heridases_ES
dc.subject.otherWhole-genome transcription profilinges_ES
dc.subject.otherExon arrayses_ES
dc.subject.otherMicroarrayses_ES
dc.subject.otherRNA-Sequencinges_ES
dc.subject.otherRNA-seqes_ES
dc.subject.otherNext generation sequencinges_ES
dc.subject.otherSpinal nerve transectiones_ES
dc.subject.otherNerve injuryes_ES
dc.subject.otherNeuropathic paines_ES
dc.subject.otherDifferential gene expressiones_ES
dc.titleA comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rates_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
rnaseq_microarrays.pdf
Size:
4.33 MB
Format:
Adobe Portable Document Format
Description:
Articulo publicado
Download

Description: Articulo publicado

Collections