Ellipse fitting by spatial averaging of random ensembles

Research Projects

Organizational Units

Journal Issue

Abstract

Earlier ellipse fitting methods often consider the algebraic and geometric forms of the ellipse. The work presented here makes use of an ensemble to provide better results. The method proposes a new ellipse parametrization based on the coordinates of both foci, and the distance between them and each point of the ellipse where the Euclidean norm is applied. Besides, a certain number of subsets are uniformly drawn without replacement from the overall training set which allows estimating the center of the distribution robustly by employing the L1 median of each estimated focus. An additional postprocessing stage is proposed to filter out the effect of bad fits. In order to evaluate the performance of this method, four different error measures were considered. Results show that our proposal outperforms all its competitors, especially when higher levels of outliers are presented. Several synthetic and real data tests were developed and confirmed such finding.

Description

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional