Time Series Heterogeneous Co-execution on CPU+GPU

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Keywords

Abstract

Time series motif (similarities) and discords discovery is one of the most important and challenging problems nowadays for time series analytics. We use an algorithm called “scrimp” that excels in collecting the relevant information of time series by reducing the computational complexity of the searching. Starting from the sequential algorithm we develop parallel alternatives based on a variety of scheduling policies that target different computing devices in a system that integrates a CPU multicore and an embedded GPU. These policies are named Dynamic -using Intel TBB- and Static -using C++11 threads- when targeting the CPU, and they are compared to a heterogeneous adaptive approach named LogFit -using Intel TBB and OpenCL- when targeting the co-execution on the CPU and GPU.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional