Time Series Heterogeneous Co-execution on CPU+GPU

dc.centroE.T.S.I. Informáticaen_US
dc.contributor.authorRomero, José Carlos
dc.contributor.authorGonzález-Navarro, María Ángeles
dc.contributor.authorRodríguez-Moreno, Andrés
dc.contributor.authorAsenjo-Plaza, Rafael
dc.contributor.authorCole, Murray
dc.date.accessioned2019-07-10T11:13:24Z
dc.date.available2019-07-10T11:13:24Z
dc.date.created2019
dc.date.issued2019-07-10
dc.departamentoArquitectura de Computadores
dc.description.abstractTime series motif (similarities) and discords discovery is one of the most important and challenging problems nowadays for time series analytics. We use an algorithm called “scrimp” that excels in collecting the relevant information of time series by reducing the computational complexity of the searching. Starting from the sequential algorithm we develop parallel alternatives based on a variety of scheduling policies that target different computing devices in a system that integrates a CPU multicore and an embedded GPU. These policies are named Dynamic -using Intel TBB- and Static -using C++11 threads- when targeting the CPU, and they are compared to a heterogeneous adaptive approach named LogFit -using Intel TBB and OpenCL- when targeting the co-execution on the CPU and GPU.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.en_US
dc.identifier.urihttps://hdl.handle.net/10630/18005
dc.language.isoengen_US
dc.relation.eventdate30/6/2019 a 6/7/2019en_US
dc.relation.eventplaceCadizen_US
dc.relation.eventtitle2019 Intl. Conf. on Computational and Mathematical Methods in Science and Engineeringen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherTime Seriesen_US
dc.subject.otherHeterogeneous computingen_US
dc.subject.otherLoad balancingen_US
dc.subject.otherSchedulingen_US
dc.subject.otherGPUen_US
dc.titleTime Series Heterogeneous Co-execution on CPU+GPUen_US
dc.typeconference outputen_US
dspace.entity.typePublication
relation.isAuthorOfPublication0857b903-5728-47c9-b298-a203bf081d23
relation.isAuthorOfPublicationb215fbc9-d0f2-4bbb-a17c-e6055e984f68
relation.isAuthorOfPublication6ea008bf-69ee-4104-a942-2033b5b07ab8
relation.isAuthorOfPublication.latestForDiscovery0857b903-5728-47c9-b298-a203bf081d23

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CMMSE-Abstract.pdf
Size:
116.93 KB
Format:
Adobe Portable Document Format
Description: