An enhanced heuristic framework for solving the Rank Pricing Problem

dc.contributor.authorJiménez-Cordero, María Asunción
dc.contributor.authorPineda-Morente, Salvador
dc.contributor.authorMorales-González, Juan Miguel
dc.date.accessioned2025-05-08T10:28:14Z
dc.date.available2025-05-08T10:28:14Z
dc.date.issued2025-03-12
dc.departamentoAnálisis Matemático, Estadística e Investigación Operativa y Matemática Aplicadaes_ES
dc.description.abstractThe Rank Pricing Problem (RPP) is a challenging bilevel optimization problem with binary variables whose objective is to determine the optimal pricing strategy for a set of products to maximize the total benefit, given that customer preferences influence the price for each product. Traditional methods for solving RPP are based on exact approaches which may be computationally expensive. In contrast, this paper presents a novel heuristic approach that takes advantage of the structure of the problem to obtain good solutions. The proposed approach consists of two phases. Firstly, a standard heuristic is applied to get a pricing strategy. In our case, we choose to use the Variable Neighborhood Search (VNS), and the genetic algorithm. Both methodologies are very popular for their effectiveness in solving combinatorial optimization problems. The solution obtained after running these algorithms is improved in a second phase, where four different local searches are applied. Such local searches use the information of the RPP to get better solutions, that is, there is no need to solve new optimization problems. Even though our methodology does not have optimality guarantees, our computational experiments show that it outperforms Mixed Integer Program solvers regarding solution quality and computational burden.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationJiménez-Cordero, A., Pineda, S., & Morales, J. M. (2025). An enhanced heuristic framework for solving the Rank Pricing Problem. Expert Systems with Applications, 276, 127122.es_ES
dc.identifier.doi10.1016/j.eswa.2025.127122
dc.identifier.issn0957-4174
dc.identifier.urihttps://hdl.handle.net/10630/38534
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAlgoritmos genéticoses_ES
dc.subjectHeurísticaes_ES
dc.subjectOptimización combinatoriaes_ES
dc.subjectPrecioses_ES
dc.subject.otherRank pricing problemes_ES
dc.subject.otherVariable Neighborhood Searches_ES
dc.subject.otherGenetic algorithmes_ES
dc.subject.otherHeuristic approacheses_ES
dc.subject.otherBilevel optimizationes_ES
dc.subject.otherCombinatorial optimizationes_ES
dc.titleAn enhanced heuristic framework for solving the Rank Pricing Problemes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationa09d0bae-ea7c-415a-8753-b996ca8979f0
relation.isAuthorOfPublication9c6082a4-a90d-4334-ad6b-990773721156
relation.isAuthorOfPublication21d3b665-5e30-48ed-83c0-c14b65100f6c
relation.isAuthorOfPublication.latestForDiscoverya09d0bae-ea7c-415a-8753-b996ca8979f0

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0957417425007444-main.pdf
Size:
1.77 MB
Format:
Adobe Portable Document Format
Description:

Collections