Benchmarking anomaly detection methods: Insights from the UCR Time Series Anomaly Archive

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorBaldán, Francisco J.
dc.contributor.authorGarcía-Gil, Diego
dc.date.accessioned2025-01-09T13:17:31Z
dc.date.available2025-01-09T13:17:31Z
dc.date.created2023
dc.date.issued2025-02
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractAnomaly detection, vital for identifying deviations from normative data patterns, is particularly crucial in sensor-driven real-world applications, which predominantly involve temporal data in the form of time series. Traditional evaluation of anomaly detection methods has relied on public benchmark datasets. Yet, recent revelations have uncovered inherent flaws and inadequacies in these datasets, casting doubt on the perceived progress in the field. To address this challenge, the UCR Time Series Anomaly Archive has been recently proposed—a meticulously curated database comprising 250 time series—designed to provide a robust and error-free benchmark for anomaly detection research. This paper comprehensively evaluates state-of-the-art anomaly detection techniques using the UCR Time Series Anomaly Archive. Our findings demonstrate the efficacy of current methods in accurately detecting anomalies across an important portion of datasets without additional optimization, underscoring the archive's utility as a foundational baseline for future research and development in anomaly detection methodologies.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUA. This work was supported by Grant FJC2021-047112-I funded by MICIU/AEI/10.13039/501100011033 and by European Union Next Generation EU/PRTR. Spanish Ministry of Science and Innovation under project TED2021-132702B-C21 funded by MCIN/AEI/10.13039/501100011033 “European Union PRTR” PID2020-119478GB-I00.es_ES
dc.identifier.citationBaldán, F. J., & García‐Gil, D. (2025). Benchmarking Anomaly Detection Methods: Insights From the UCR Time Series Anomaly Archive. Expert Systems, 42(2), e13767.es_ES
dc.identifier.doi10.1111/exsy.13767
dc.identifier.urihttps://hdl.handle.net/10630/36084
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSeries temporaleses_ES
dc.subjectAnálisis de series temporaleses_ES
dc.subjectAplicaciones informáticases_ES
dc.subject.otherAnomaly detectiones_ES
dc.subject.otherDetección de anomalíases_ES
dc.subject.otherConjuntos de datoses_ES
dc.subject.otherSensoreses_ES
dc.subject.otherBenchmarkinges_ES
dc.titleBenchmarking anomaly detection methods: Insights from the UCR Time Series Anomaly Archivees_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Expert Systems - 2024 - Baldán - Benchmarking Anomaly Detection Methods Insights From the UCR Time Series Anomaly Archive.pdf
Size:
494.99 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections