A Hankel matrix acting on spaces of analytic functions.
Loading...
Files
Description: Versión aceptada antes de ser publicada
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Share
Center
Department/Institute
Abstract
If μ is a positive Borel measure on the interval [0, 1) we let H_μ be the Hankel matrix { μ_{n,k} }_{n,k} with entries μ_{n,k} =μ_{n+k}, where, for μ_n denotes the moment of order n of μ. This matrix induces formally an operator on the space of all analytic functions in the unit disc D. This is a natural generalization of the classical Hilbert operator. In this paper we improve the results obtained in some recent papers concerning the action of the operators H_μ on Hardy spaces and on Möbius invariant spaces.
Description
Política de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/15630?template=romeo
Bibliographic citation
Girela, D., Merchán, N. A Hankel Matrix Acting on Spaces of Analytic Functions. Integr. Equ. Oper. Theory 89, 581–594 (2017). https://doi.org/10.1007/s00020-017-2409-3












