A Hankel matrix acting on spaces of analytic functions.

Loading...
Thumbnail Image

Files

Gir-Mer-2-Hankel-Sp-Analytic-Functions-REVISED.pdf (358.82 KB)

Description: Versión aceptada antes de ser publicada

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

If μ is a positive Borel measure on the interval [0, 1) we let H_μ be the Hankel matrix { μ_{n,k} }_{n,k} with entries μ_{n,k} =μ_{n+k}, where, for μ_n denotes the moment of order n of μ. This matrix induces formally an operator on the space of all analytic functions in the unit disc D. This is a natural generalization of the classical Hilbert operator. In this paper we improve the results obtained in some recent papers concerning the action of the operators H_μ on Hardy spaces and on Möbius invariant spaces.

Description

Política de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/15630?template=romeo

Bibliographic citation

Girela, D., Merchán, N. A Hankel Matrix Acting on Spaces of Analytic Functions. Integr. Equ. Oper. Theory 89, 581–594 (2017). https://doi.org/10.1007/s00020-017-2409-3

Collections

Endorsement

Review

Supplemented By

Referenced by