The number of t-norms on some special lattices

dc.contributor.authorBejines-López, Carlos
dc.contributor.authorChasco Ugarte, María Jesús
dc.contributor.authorElorza, Jorge
dc.contributor.authorJanis, Vladimir
dc.contributor.authorBrutenicova, Michaela
dc.date.accessioned2024-09-25T07:51:42Z
dc.date.available2024-09-25T07:51:42Z
dc.date.issued2020
dc.departamentoMatemática Aplicada
dc.description.abstractWe estimate the number of triangular norms on some classes of finite lattices. One of them is obtained from two chains by identifying their zero elements, unit elements and an atom. Another one is the set of the dual lattices of the previous one. The obtained formulas involve the number of triangular norms on the corresponding chains. We derive several properties of a triangular norm for this kind of lattices, that enable us to obtain better estimates. Moreover, we obtain the number of t-norms in another class of lattices, which includes the so-called Chinese lantern. Finally, we estimate the number of Archimedean t-norms and divisible t-norms on these lattices.es_ES
dc.identifier.citationBejines, C., Bruteničová, M., Chasco, M. J., Elorza, J., & Janiš, V. (2021). The number of t-norms on some special lattices. Fuzzy Sets and Systems, 408, 26-43.es_ES
dc.identifier.doi10.1016/j.fss.2020.03.014
dc.identifier.urihttps://hdl.handle.net/10630/33149
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMatemáticas difusases_ES
dc.subject.otherT-normses_ES
dc.subject.otherFuzzy setses_ES
dc.titleThe number of t-norms on some special latticeses_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationff27a270-c45a-4cf0-943d-37963e87efb2
relation.isAuthorOfPublication.latestForDiscoveryff27a270-c45a-4cf0-943d-37963e87efb2

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
numbers_of_tnorms_preprint.pdf
Size:
501.98 KB
Format:
Adobe Portable Document Format
Description:

Collections