An open source framework based on Kafka-ML for Distributed DNN inference over the Cloud-to-Things continuum

Loading...
Thumbnail Image

Files

Paper_JSA_2021.pdf (1.16 MB)

Description: Artículo publicado

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

The current dependency of Artificial Intelligence (AI) systems on Cloud computing implies higher transmission latency and bandwidth consumption. Moreover, it challenges the real-time monitoring of physical objects, e.g., the Internet of Things (IoT). Edge systems bring computing closer to end devices and support time-sensitive applications. However, Edge systems struggle with state-of-the-art Deep Neural Networks (DNN) due to computational resource limitations. This paper proposes a technology framework that combines the Edge-Cloud architecture concept with BranchyNet advantages to support fault-tolerant and low-latency AI predictions. The implementation and evaluation of this framework allow assessing the benefits of running Distributed DNN (DDNN) in the Cloud-to-Things continuum. Compared to a Cloud-only deployment, the results obtained show an improvement of 45.34% in the response time. Furthermore, this proposal presents an extension for Kafka-ML that reduces rigidness over the Cloud-to-Things continuum managing and deploying DDNN.

Description

Bibliographic citation

Journal of Systems Architecture, Volume 118, September 2021, 102214

Collections

Endorsement

Review

Supplemented By

Referenced by