An open source framework based on Kafka-ML for Distributed DNN inference over the Cloud-to-Things continuum

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorTorres, Daniel R.
dc.contributor.authorMartín-Fernández, Cristian
dc.contributor.authorDíaz, Manuel
dc.contributor.authorRubio-Muñoz, Bartolomé
dc.date.accessioned2021-07-01T11:25:34Z
dc.date.available2021-07-01T11:25:34Z
dc.date.created2021
dc.date.issued2021-06-16
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractThe current dependency of Artificial Intelligence (AI) systems on Cloud computing implies higher transmission latency and bandwidth consumption. Moreover, it challenges the real-time monitoring of physical objects, e.g., the Internet of Things (IoT). Edge systems bring computing closer to end devices and support time-sensitive applications. However, Edge systems struggle with state-of-the-art Deep Neural Networks (DNN) due to computational resource limitations. This paper proposes a technology framework that combines the Edge-Cloud architecture concept with BranchyNet advantages to support fault-tolerant and low-latency AI predictions. The implementation and evaluation of this framework allow assessing the benefits of running Distributed DNN (DDNN) in the Cloud-to-Things continuum. Compared to a Cloud-only deployment, the results obtained show an improvement of 45.34% in the response time. Furthermore, this proposal presents an extension for Kafka-ML that reduces rigidness over the Cloud-to-Things continuum managing and deploying DDNN.es_ES
dc.identifier.citationJournal of Systems Architecture, Volume 118, September 2021, 102214es_ES
dc.identifier.doihttps://doi.org/10.1016/j.sysarc.2021.102214
dc.identifier.urihttps://hdl.handle.net/10630/22511
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectComputaciónes_ES
dc.subjectInteligencia artificiales_ES
dc.subject.otherDistributed deep neural networkses_ES
dc.subject.otherCloud computinges_ES
dc.subject.otherFog/edge computinges_ES
dc.subject.otherDistributed processinges_ES
dc.subject.otherLow-latency fault-tolerant frameworkes_ES
dc.titleAn open source framework based on Kafka-ML for Distributed DNN inference over the Cloud-to-Things continuumes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationbf2870d3-5cc6-414d-8d71-60e242c18554
relation.isAuthorOfPublication5d31c256-428d-41f8-a525-6549736c3b2e
relation.isAuthorOfPublication.latestForDiscoverybf2870d3-5cc6-414d-8d71-60e242c18554

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paper_JSA_2021.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Description:
Artículo publicado
Download

Description: Artículo publicado

Collections