Mackey functors for posets

dc.centroFacultad de Cienciases_ES
dc.contributor.authorCarrión Santiago, Guille
dc.contributor.authorDíaz-Ramos, Antonio
dc.date.accessioned2025-02-11T11:49:18Z
dc.date.available2025-02-11T11:49:18Z
dc.date.issued2025-02-03
dc.departamentoÁlgebra, Geometría y Topología
dc.description.abstractWe define Mackey functors over posets mimicking the classical notion and introduce a weak version of them. Then we show that they are acyclic by analyzing cofibrant and pseudoprojective objects in the category of functors indexed in a filtered poset. As application, we study homotopy colimits over posets and we give a homology decomposition for the classifying space of the Bianchi groupes_ES
dc.description.sponsorshipFunding for open access publishing: Universidad de Málaga/CBUA Funding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationCarrión Santiago, G., & Díaz Ramos, A. (2025). Mackey functors for posets. Revista de La Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 119(2). https://doi.org/10.1007/s13398-025-01704-5es_ES
dc.identifier.doi10.1007/s13398-025-01704-5
dc.identifier.urihttps://hdl.handle.net/10630/37787
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAlgebras topológicases_ES
dc.subject.otherHigher limites_ES
dc.subject.otherModel categoryes_ES
dc.subject.otherPseudo-projectivees_ES
dc.subject.otherMackey functores_ES
dc.subject.otherAcyclic functores_ES
dc.subject.otherHomology decompositiones_ES
dc.subject.otherBianchi groupes_ES
dc.titleMackey functors for posetses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication8f322e14-68eb-4ca8-af0e-ae1e17ae331e
relation.isAuthorOfPublication.latestForDiscovery8f322e14-68eb-4ca8-af0e-ae1e17ae331e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s13398-025-01704-5.pdf
Size:
330.18 KB
Format:
Adobe Portable Document Format
Description:

Collections