Exploratory Data Analysis and Foreground Detection with the Growing Hierarchical Neural Forest.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorPalomo-Ferrer, Esteban José
dc.contributor.authorLópez-Rubio, Ezequiel
dc.contributor.authorOrtega-Zamorano, Francisco
dc.contributor.authorBenítez-Rochel, Rafaela
dc.date.accessioned2025-07-18T10:25:42Z
dc.date.available2025-07-18T10:25:42Z
dc.date.issued2020
dc.departamentoLenguajes y Ciencias de la Computaciónes_ES
dc.description.abstractIn this paper, a new self-organizing artificial neural network called growing hierarchical neural forest (GHNF) is proposed. The GHNF is a hierarchical model based on the growing neural forest, which is a tree-based model that learns a set of trees (forest) instead of a general graph so that the forest can grow in size. This way, the GHNF faces three important limitations regarding the self-organizing map: fixed size, fixed topology, and lack of hierarchical representation for input data. Hence, the GHNF is especially amenable to datasets containing clusters where each cluster has a hierarchical structure since each tree of the GHNF forest can adapt to one of the clusters. Experimental results show the goodness of our proposal in terms of self-organization and clustering capabilities. In particular, it has been applied to text mining of tweets as a typical exploratory data analysis application, where a hierarchical representation of concepts present in tweets has been obtained. Moreover, it has been applied to foreground detection in video sequences, outperforming several methods specialized in foreground detection.es_ES
dc.identifier.citationPalomo, E.J., López-Rubio, E., Ortega-Zamorano, F. et al. Exploratory Data Analysis and Foreground Detection with the Growing Hierarchical Neural Forest. Neural Process Lett 52, 2537–2563 (2020). https://doi.org/10.1007/s11063-020-10360-2es_ES
dc.identifier.doi10.1007/s11063-020-10360-2
dc.identifier.urihttps://hdl.handle.net/10630/39416
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectSistemas autoorganizativoses_ES
dc.subjectProcesado de imágeneses_ES
dc.subjectAnálisis clusteres_ES
dc.subjectMinería de datoses_ES
dc.subjectInteligencia artificiales_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subject.otherSelf-organizationes_ES
dc.subject.otherClusteringes_ES
dc.subject.otherText mininges_ES
dc.subject.otherImage segmentationes_ES
dc.titleExploratory Data Analysis and Foreground Detection with the Growing Hierarchical Neural Forest.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationee7a0035-e256-42bb-ac83-bc46a618cd04
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication6280dc3f-86b0-49c7-9979-9d2e9e9f8e22
relation.isAuthorOfPublication.latestForDiscoveryee7a0035-e256-42bb-ac83-bc46a618cd04

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Growing_Hierarchical_Neural_Forest.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format
Description:

Collections