Optimización distribucionalmente robusta con múltiples fuentes de datos y confianza incorporada.
Loading...
Files
Identifiers
Publication date
Reading date
Authors
Robles Ríos, Juan
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Málaga
Share
Center
Department/Institute
Abstract
Este trabajo presenta un modelo de optimización distribucionalmente robusta con
múltiples fuentes de datos (MR-DRO), que permite tomar decisiones bajo incertidumbre
integrando datos de distintas fuentes de información con diferentes niveles de calidad.
El modelo asigna una determinada “confianza”a cada fuente, las cuales se actualizan
dinámicamente según su precisión predictiva y el impacto de sus decisiones. Además,
presenta robustez ante errores de estimación al considerar un conjunto de distribuciones
posibles dentro de una bola de Wasserstein de radio ϵ. Por último, el modelo se aplica a
un caso de estudio en optimización de carteras financieras, mostrando su capacidad para
generar decisiones más estables y adaptativas.
This work presents a multi-reference distributionally robust optimization (MR-DRO) model, which enables decision-making under uncertainty by integrating data from various sources with different levels of quality. The model assigns a specific “trust”to each source, which is updated dynamically based on its predictive accuracy and its impact on decisions. Additionally, it exhibits robustness to estimation errors by considering a set of possible distributions within a Wasserstein ball of radius ϵ. Finally, the model is applied to a case study in portfolio optimization, demonstrating its ability to produce more stable and adaptive decisions.
This work presents a multi-reference distributionally robust optimization (MR-DRO) model, which enables decision-making under uncertainty by integrating data from various sources with different levels of quality. The model assigns a specific “trust”to each source, which is updated dynamically based on its predictive accuracy and its impact on decisions. Additionally, it exhibits robustness to estimation errors by considering a set of possible distributions within a Wasserstein ball of radius ϵ. Finally, the model is applied to a case study in portfolio optimization, demonstrating its ability to produce more stable and adaptive decisions.
Description
Bibliographic citation
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional













