A Jordan canonical form for nilpotent elements in an arbitrary ring.

dc.contributor.authorGarcía-González, Esther
dc.contributor.authorGómez-Lozano, Miguel Ángel
dc.contributor.authorMuñoz-Alcázar, Rubén José
dc.contributor.authorVera de Salas, Guillermo
dc.date.accessioned2024-09-25T15:46:57Z
dc.date.available2024-09-25T15:46:57Z
dc.date.issued2019
dc.departamentoÁlgebra, Geometría y Topología
dc.descriptionhttps://v2.sherpa.ac.uk/id/publication/16712es_ES
dc.description.abstractIn this paper we give an inductive new proof of the Jordan canonical form of a nilpotent element in an arbitrary ring. If is a nilpotent element of index n with von Neumann regular , we decompose with a Jordan block of size n over a corner S of R, and nilpotent of index <n for an idempotent e of R commuting with a. This result makes it possible to characterize prime rings of bounded index n with a nilpotent element of index n and von Neumann regular as a matrix ring over a unital domain.es_ES
dc.identifier.doi10.1016/j.laa.2019.07.016
dc.identifier.urihttps://hdl.handle.net/10630/33287
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectGrupos nilpotenteses_ES
dc.subjectAnillos (Álgebra)es_ES
dc.subject.otherJordan canonical formes_ES
dc.subject.otherVon Neumman regulares_ES
dc.subject.otherNilpotentes_ES
dc.titleA Jordan canonical form for nilpotent elements in an arbitrary ring.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc449805c-94cf-44fe-a228-25d96d03ec99
relation.isAuthorOfPublicationd5eeb59c-6fe1-407f-8128-7ca53c6d7c04
relation.isAuthorOfPublication.latestForDiscoveryc449805c-94cf-44fe-a228-25d96d03ec99

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A Jordan canonical form for nilpotent elements in an arbitrary ring.pdf
Size:
315.31 KB
Format:
Adobe Portable Document Format
Description:

Collections