A decision framework for privacy-preserving synthetic data generation

dc.contributor.authorSánchez-Serrano, Pablo
dc.contributor.authorRíos-del-Pozo, Rubén
dc.contributor.authorAgudo-Ruiz, Isaac
dc.date.accessioned2025-06-16T10:15:27Z
dc.date.available2025-06-16T10:15:27Z
dc.date.issued2025-06-13
dc.departamentoLenguajes y Ciencias de la Computaciónes_ES
dc.description.abstractAccess to realistic data is essential for various purposes, including training machine learning models, conducting simulations, and supporting data-driven decision making across diverse domains. However, the use of real data often raises significant privacy concerns, as it may contain sensitive or personal information. Generative models have emerged as a promising solution to this problem by generating synthetic datasets that closely resemble real data. Nevertheless, these models are typically trained on original datasets, which carries the risk of leaking sensitive information. To mitigate this issue, privacy-preserving generative models have been developed to balance data utility and privacy guarantees. This paper examines existing generative models for synthetic tabular data generation, proposing a taxonomy of solutions based on the privacy guarantees they provide. Additionally, we present a decision framework to aid in selecting the most suitable privacy-preserving generative model for specific scenarios, using privacy and utility metrics as key selection criteria.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationSanchez-Serrano, P., Rios, R., & Agudo, I. (2025). A decision framework for privacy-preserving synthetic data generation. Computers and Electrical Engineering, 126, 110468.es_ES
dc.identifier.doi10.1016/j.compeleceng.2025.110468
dc.identifier.issn0045-7906
dc.identifier.urihttps://hdl.handle.net/10630/38994
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDerecho a la intimidades_ES
dc.subjectUtilidades (Programas de ordenador)es_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.otherSynthetic dataes_ES
dc.subject.otherGenerative modelses_ES
dc.subject.otherPrivacyes_ES
dc.subject.otherUtilityes_ES
dc.subject.otherMetricses_ES
dc.subject.otherTabular dataes_ES
dc.subject.otherTaxonomyes_ES
dc.subject.otherFrameworkes_ES
dc.titleA decision framework for privacy-preserving synthetic data generationes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc85f06a0-993b-4cfe-9cf3-4b943851b9e4
relation.isAuthorOfPublication28cdc4ed-2a6c-42df-9a84-39afd98b48a0
relation.isAuthorOfPublication.latestForDiscoveryc85f06a0-993b-4cfe-9cf3-4b943851b9e4

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0045790625004112-main.pdf
Size:
2.51 MB
Format:
Adobe Portable Document Format
Description:

Collections