Transforming Gaussian correlations. Applications to generating long-range power-law correlated time series with arbitrary distribution

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

The observable outputs of many complex dynamical systems consist in time series exhibiting autocorrelation functions of great diversity of behaviors, including long-range power-law autocorre- lation functions, as a signature of interactions operating at many temporal or spatial scales. Often, numerical algorithms able to generate correlated noises reproducing the properties of real time se- ries are used to study and characterize such systems. Typically, those algorithms produce Gaussian time series. However, real, experimentally observed time series are often non-Gaussian, and may follow distributions with a diversity of behaviors concerning the support, the symmetry or the tail properties. Given a correlated Gaussian time series, it is always possible to transform it into a time series with a different distribution, but the question is how this transformation affects the behavior of the autocorrelation function. Here, we study analytically and numerically how the Pearson’s cor- relation of two Gaussian variables changes when the variables are transformed to follow a different destination distribution. Specifically, we consider bounded and unbounded distributions, symmetric and non-symmetric distributions, and distributions with different tail properties, from decays faster than exponential to heavy tail cases including power-laws, and we find how these properties affect the correlation of the final variables. We extend these results to Gaussian time series which are transformed to have a different marginal distribution, and show how the autocorrelation function of the final non-Gaussian time series depends on the Gaussian correlations and on the final marginal distribution.

Description

Política de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/9866?template=romeo

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional