A Curvature Inequality Characterizing Totally Geodesic Null Hypersurfaces

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorOlea-Andrades, Benjamín
dc.date.accessioned2023-04-18T11:27:34Z
dc.date.available2023-04-18T11:27:34Z
dc.date.issued2023
dc.departamentoMatemática Aplicada
dc.description.abstractA well-known application of the Raychaudhuri equation shows that, under geodesic completeness, totally geodesic null hypersurfaces are unique which satisfy that the Ricci curvature is nonnegative in the null direction. The proof of this fact is based on a direct analysis of a differential inequality. In this paper, we show, without assuming the geodesic completeness, that an inequality involving the squared null mean curvature and the Ricci curvature in a compact three-dimensional null hypersurface also implies that it is totally geodesic. The proof is completely different from the above, since Riemannanian tools are used in the null hypersurface thanks to the rigging technique.es_ES
dc.description.sponsorshipFunding for open access publishing: Universidad Málaga/CBUA. Funding for open access charge: Universidad de Málaga / CBUA.es_ES
dc.identifier.citationOlea. (2023). A Curvature Inequality Characterizing Totally Geodesic Null Hypersurfaces. Mediterranean Journal of Mathematics, 20(2). https://doi.org/10.1007/s00009-023-02285-6es_ES
dc.identifier.doihttps://doi.org/10.1007/s00009-023-02285-6
dc.identifier.urihttps://hdl.handle.net/10630/26277
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectHipersuperficieses_ES
dc.subjectGeometría diferenciales_ES
dc.subject.otherNull hypersurfacees_ES
dc.subject.otherRigging techniquees_ES
dc.subject.otherRaychaudhuri equationes_ES
dc.titleA Curvature Inequality Characterizing Totally Geodesic Null Hypersurfaceses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication4fcdee57-f2f9-44f7-b6ab-d85b7beb4b5f
relation.isAuthorOfPublication.latestForDiscovery4fcdee57-f2f9-44f7-b6ab-d85b7beb4b5f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s00009-023-02285-6.pdf
Size:
402.29 KB
Format:
Adobe Portable Document Format
Description:

Collections