Combination of multiple diagnosis systems in self-healing networks

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorPalacios, David
dc.contributor.authorKhatib, Emil Jatib
dc.contributor.authorBarco-Moreno, Raquel
dc.date.accessioned2024-10-04T08:48:45Z
dc.date.available2024-10-04T08:48:45Z
dc.date.issued2016-07
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractThe Self-Organizing Networks (SON) paradigm proposes a set of functions to automate network management in mobile communication networks. Within SON, the purpose of Self-Healing is to detect cells with service degradation, diagnose the fault cause that affects them, rapidly compensate the problem with the support of neighboring cells and repair the network by performing some recovery actions. The diagnosis phase can be designed as a classifier. In this context, hybrid ensembles of classifiers enhance the diagnosis performance of expert systems of different kinds by combining their outputs. In this paper, a novel scheme of hybrid ensemble of classifiers is proposed as a two-step procedure: a modeling stage of the baseline classifiers and an application stage, when the combination of partial diagnoses is actually performed. The use of statistical models of the baseline classifiers allows an immediate ensemble diagnosis without running and querying them individually, thus resulting in a very low computational cost in the execution stage. Results show that the performance of the proposed method compared to its standalone components is significantly better in terms of diagnosis error rate, using both simulated data and cases from a live LTE network. Furthermore, this method relies on concepts which are not linked to a particular mobile communication technology, allowing it to be applied either on well established cellular networks, like UMTS, or on recent and forthcoming technologies, like LTE-A and 5G.es_ES
dc.description.sponsorshipOptimi-Ericsson, Junta de Andalucía (Consejería de Ciencia, Innovación y Empresa, Ref. 59288 y Proyecto de Investigación de Excelencia P12-TIC-2905), ERDF.es_ES
dc.identifier.citationDavid Palacios, Emil J. Khatib, Raquel Barco, Combination of multiple diagnosis systems in Self-Healing networks, Expert Systems with Applications, Volume 64, 2016, Pages 56-68, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2016.07.030.es_ES
dc.identifier.doi10.1016/j.eswa.2016.07.030
dc.identifier.urihttps://hdl.handle.net/10630/34319
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSistemas de comunicaciones móvileses_ES
dc.subjectComunicación-Análisis de redes_ES
dc.subject.otherLTEes_ES
dc.subject.otherSelf-healinges_ES
dc.subject.otherRoot cause analysises_ES
dc.subject.otherSelf-organizing networks (SON)es_ES
dc.subject.otherHybrid ensemble classifieres_ES
dc.subject.otherAutomatic fault identificationes_ES
dc.titleCombination of multiple diagnosis systems in self-healing networkses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc933e578-ad80-410f-88c2-f0dbdaa6cf72
relation.isAuthorOfPublication.latestForDiscoveryc933e578-ad80-410f-88c2-f0dbdaa6cf72

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0957417416303773-main.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description:

Collections