Monte Carlo uncertainty analysis of an ANN-based spectral analysis method.

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorSalinas-Vázquez, José Ramón
dc.contributor.authorGarcía-Lagos, Francisco
dc.contributor.authorDiaz-De Aguilar, Javier
dc.contributor.authorJoya-Caparrós, Gonzalo
dc.contributor.authorSandoval-Hernández, Francisco
dc.date.accessioned2025-12-19T12:52:16Z
dc.date.available2025-12-19T12:52:16Z
dc.date.issued2020-01-20
dc.departamentoTecnología Electrónicaes_ES
dc.descriptionhttps://openpolicyfinder.jisc.ac.uk/id/publication/17185?from=single_hites_ES
dc.description.abstractThis work presents the uncertainty analysis of an artificial neural network (ANN)-based method, called multiharmonic ANN fitting method (MANNFM), which is able to obtain, at a metrological level, the spectrum of asynchronously sampled periodical signals. For sinusoidal and harmonic content signals, jitter and quantization noise contributions to uncertainty are considered in order to obtain amplitude and phase uncertainties using Monte Carlo method. The analysis performed identifies also both contributions to uncertainty for different parameters laboratory configurations. The analysis is performed simultaneously with our method and two others: discrete Fourier transform (DFT), for synchronously sampled signals, and multiharmonic sine-fitting method (MSFM), for asynchronously sampled signals, in order to compare them in terms of uncertainty. Regarding asynchronous methods, results show that MANNFM provides the same uncertainties than MSFM, with the advantage of a simpler implementation. Regarding asynchronous and synchronous methods comparison, results for sinusoidal signals show that MANNFM has the same uncertainty as DFT for amplitude and higher uncertainty for phase values; for signals with harmonic content, amplitude conclusions maintain but, regarding phase, both MANNFM and DFT uncertainties become closer as the frequency increases, which implies, in fact, that when synchronous sampling is not possible, spectrum analysis can be performed with asynchronous methods without incurring in uncertainty increases.es_ES
dc.description.sponsorshipGrupo ISIS. Universidad de Málagaes_ES
dc.description.sponsorshipCentro Español de Metrologíaes_ES
dc.identifier.citationSalinas, J.R., García-Lagos, F., Diaz de Aguilar, J. et al. Monte Carlo uncertainty analysis of an ANN-based spectral analysis method. Neural Comput & Applic 32, 351–368 (2020). https://doi.org/10.1007/s00521-019-04169-xes_ES
dc.identifier.doi10.1007/s00521-019-04169-x
dc.identifier.urihttps://hdl.handle.net/10630/41293
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMontecarlo, Método dees_ES
dc.subjectModelos matemáticoses_ES
dc.subjectTeoría espectral (Matemáticas)es_ES
dc.subject.otherSine-Fitting Methodses_ES
dc.subject.otherSpectral Analysises_ES
dc.subject.otherADALINEes_ES
dc.subject.otherDigital Measurementes_ES
dc.subject.otherUncertaintyes_ES
dc.subject.otherMonte Carloes_ES
dc.titleMonte Carlo uncertainty analysis of an ANN-based spectral analysis method.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication42ffade9-0d89-4187-91c1-2e402a6a4221
relation.isAuthorOfPublication7c037c2a-75ca-4e26-abf5-325bbd186b71
relation.isAuthorOfPublication39cdaa1a-9f58-44de-a638-781ee086cd05
relation.isAuthorOfPublication44e7f8db-2813-4dce-ad31-9da42f79c41a
relation.isAuthorOfPublication.latestForDiscovery42ffade9-0d89-4187-91c1-2e402a6a4221

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NCAA-D-18-00201_R2-3-31-2020.pdf
Size:
2.36 MB
Format:
Adobe Portable Document Format
Description:
Articulo principal. Última versión aprobada. Preprint
Download

Description: Articulo principal. Última versión aprobada. Preprint

Collections